Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Eng J ; 4452022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35794882

RESUMO

The application of partial nitritation-anammox (PN/A) under mainstream conditions can enable substantial cost savings at wastewater treatment plants (WWTPs), but how process conditions and cell physiology affect anammox performance at psychrophilic temperatures below 15 °C remains poorly understood. We tested 14 anammox communities, including 8 from globally-installed PN/A processes, for (i) specific activity at 10-30 °C, (ii) composition of membrane lipids, and (iii) microbial community structure. We observed that membrane composition and cultivation temperature were closely related to the activity of anammox biomasses. The size of ladderane lipids and the content of bacteriohopanoids were key physiological components related to anammox performance at low temperatures. We also indicate that the adaptation of mesophilic cultures to psychrophilic regime necessitates months, but in some cases can take up to 5 years. Interestingly, biomass enriched in the marine genus "Candidatus Scalindua" displayed outstanding potential for nitrogen removal from cold streams. Collectively, our comprehensive study provides essential knowledge of cold adaptation mechanism, will enable more accurate modelling and suggests highly promising target anammox genera for inoculation and set-up of anammox reactors, in particular for mainstream WWTPs.

2.
Vaccine ; 39(47): 6920-6929, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34696934

RESUMO

Protein bodies (PBs) are particles consisting of insoluble, aggregated proteins with potential as a vaccine formulation. PBs can contain high concentrations of antigen, are stable and relatively resistant to proteases, release antigen slowly and are cost-effective to manufacture. Yet, the capacity of PBs to provoke immune responses and protection in the upper respiratory tract, a major entry route of respiratory pathogens, is largely unknown. In this study, we vaccinated mice intranasally with PBs comprising antigens from Streptococcus pneumoniae and evaluated the level of protection against nasopharyngeal colonization. PBs composed of the α-helical domain of pneumococcal surface protein A (PspAα) provided superior protection against colonization with S. pneumoniae compared to soluble PspAα. Immunization with soluble protein or PBs induced differences in antibody binding to pneumococci as well as a highly distinct antigen-specific nasal cytokine profile upon in vivo stimulation with inactivated S. pneumoniae. Moreover, immunization with PBs composed of conserved putative pneumococcal antigens reduced colonization by S. pneumoniae in mice, both as a single- and as a multi-antigen formulation. In conclusion, PBs represent a vaccine formulation that elicits strong mucosal immune responses and protection. The versatility of this platform offers opportunities for development of next-generation vaccine formulations.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Administração Intranasal , Animais , Anticorpos Antibacterianos , Proteínas de Bactérias , Imunidade nas Mucosas , Camundongos , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Vacinação
3.
Biochem Soc Trans ; 34(Pt 1): 174-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16417514

RESUMO

In the anaerobic ammonium oxidation (anammox) process, ammonia is oxidized with nitrite as primary electron acceptor under strictly anoxic conditions. The reaction is catalysed by a specialized group of planctomycete-like bacteria. These anammox bacteria use a complex reaction mechanism involving hydrazine as an intermediate. The reactions are assumed to be carried out in a unique prokaryotic organelle, the anammoxosome. This organelle is surrounded by ladderane lipids, which make the organelle nearly impermeable to hydrazine and protons. The localization of the major anammox protein, hydrazine oxidoreductase, was determined via immunogold labelling to be inside the anammoxosome. The anammox bacteria have been detected in many marine and freshwater ecosystems and were estimated to contribute up to 50% of oceanic nitrogen loss. Furthermore, the anammox process is currently implemented in water treatment for the low-cost removal of ammonia from high-strength waste streams. Recent findings suggested that the anammox bacteria may also use organic acids to convert nitrate and nitrite into dinitrogen gas when ammonia is in short supply.


Assuntos
Bactérias Anaeróbias/metabolismo , Compostos de Amônio Quaternário/metabolismo , Ácidos/química , Ácidos/metabolismo , Anaerobiose , Bactérias Anaeróbias/citologia , Biofilmes , Hidrazinas/metabolismo
4.
Biochem Soc Trans ; 33(Pt 1): 119-23, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15667281

RESUMO

The obligately anaerobic ammonium oxidation (anammox) reaction with nitrite as primary electron acceptor is catalysed by the planctomycete-like bacteria Brocadia anammoxidans, Kuenenia stuttgartiensis and Scalindua sorokinii. The anammox bacteria use a complex reaction mechanism involving hydrazine as an intermediate. They have a unique prokaryotic organelle, the anammoxosome, surrounded by ladderane lipids, which exclusively contains the hydrazine oxidoreductase as the major protein to combine nitrite and ammonia in a one-to-one fashion. In addition to the peculiar microbiology, anammox was shown to be very important in the oceanic nitrogen cycle, and proved to be a very good alternative for treatment of high-strength nitrogenous waste streams. With the assembly of the K. stuttgartiensis genome at Genoscope, Evry, France, the anammox reaction has entered the genomic and proteomic era, enabling the elucidation of many intriguing aspects of this fascinating microbial process.


Assuntos
Compostos de Amônio Quaternário/metabolismo , Anaerobiose , Oxirredução
5.
Appl Microbiol Biotechnol ; 63(2): 107-14, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12955353

RESUMO

Recently, two fresh water species, " Candidatus Brocadia anammoxidans" and " Candidatus Kuenenia stuttgartiensis", and one marine species, " Candidatus Scalindua sorokinii", of planctomycete anammox bacteria have been identified. " Candidatus Scalindua sorokinii" was discovered in the Black Sea, and contributed substantially to the loss of fixed nitrogen. All three species contain a unique organelle--the anammoxosome--in their cytoplasm. The anammoxosome contains the hydrazine/hydroxylamine oxidoreductase enzyme, and is thus the site of anammox catabolism. The anammoxosome is surrounded by a very dense membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater.


Assuntos
Bactérias Anaeróbias/metabolismo , Água Doce/microbiologia , Compostos de Amônio Quaternário/metabolismo , Água do Mar/microbiologia , Anaerobiose , Reatores Biológicos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...