Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Allergy Clin Immunol ; 152(5): 1273-1291.e15, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37419334

RESUMO

BACKGROUND: Thymus hypoplasia due to stromal cell problems has been linked to mutations in several transcription factors, including Forkhead box N1 (FOXN1). FOXN1 supports T-cell development by regulating the formation and expansion of thymic epithelial cells (TECs). While autosomal recessive FOXN1 mutations result in a nude and severe combined immunodeficiency phenotype, the impact of single-allelic or compound heterozygous FOXN1 mutations is less well-defined. OBJECTIVE: With more than 400 FOXN1 mutations reported, their impact on protein function and thymopoiesis remains unclear for most variants. We developed a systematic approach to delineate the functional impact of diverse FOXN1 variants. METHODS: Selected FOXN1 variants were tested with transcriptional reporter assays and imaging studies. Thymopoiesis was assessed in mouse lines genocopying several human FOXN1 variants. Reaggregate thymus organ cultures were used to compare the thymopoietic potential of the FOXN1 variants. RESULTS: FOXN1 variants were categorized into benign, loss- or gain-of-function, and/or dominant-negatives. Dominant negative activities mapped to frameshift variants impacting the transactivation domain. A nuclear localization signal was mapped within the DNA binding domain. Thymopoiesis analyses with mouse models and reaggregate thymus organ cultures revealed distinct consequences of particular Foxn1 variants on T-cell development. CONCLUSIONS: The potential effect of a FOXN1 variant on T-cell output from the thymus may relate to its effects on transcriptional activity, nuclear localization, and/or dominant negative functions. A combination of functional assays and thymopoiesis comparisons enabled a categorization of diverse FOXN1 variants and their potential impact on T-cell output from the thymus.


Assuntos
Linfócitos T , Timo , Animais , Humanos , Camundongos , Diferenciação Celular , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fenótipo , Linfócitos T/metabolismo
3.
J Clin Invest ; 132(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36136514

RESUMO

22q11.2 deletion syndrome (22q11.2DS) is the most common human chromosomal microdeletion, causing developmentally linked congenital malformations, thymic hypoplasia, hypoparathyroidism, and/or cardiac defects. Thymic hypoplasia leads to T cell lymphopenia, which most often results in mild SCID. Despite decades of research, the molecular underpinnings leading to thymic hypoplasia in 22q11.2DS remain unknown. Comparison of embryonic thymuses from mouse models of 22q11.2DS (Tbx1neo2/neo2) revealed proportions of mesenchymal, epithelial, and hematopoietic cell types similar to those of control thymuses. Yet, the small thymuses were growth restricted in fetal organ cultures. Replacement of Tbx1neo2/neo2 thymic mesenchymal cells with normal ones restored tissue growth. Comparative single-cell RNA-Seq of embryonic thymuses uncovered 17 distinct cell subsets, with transcriptome differences predominant in the 5 mesenchymal subsets from the Tbx1neo2/neo2 cell line. The transcripts affected included those for extracellular matrix proteins, consistent with the increased collagen deposition we observed in the small thymuses. Attenuating collagen cross-links with minoxidil restored thymic tissue expansion for hypoplastic lobes. In colony-forming assays, the Tbx1neo2/neo2-derived mesenchymal cells had reduced expansion potential, in contrast to the normal growth of thymic epithelial cells. These findings suggest that mesenchymal cells were causal to the small embryonic thymuses in the 22q11.2DS mouse models, which was correctable by substitution with normal mesenchyme.


Assuntos
Síndrome de DiGeorge , Humanos , Animais , Camundongos , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/terapia , Modelos Animais de Doenças , Camundongos SCID , Timo
4.
Front Immunol ; 13: 864777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757725

RESUMO

The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals' own tissue is congenitally, clinically, or accidentally rendered non-functional.


Assuntos
Células Endoteliais , Timócitos , Adipogenia , Animais , Células Epiteliais/metabolismo , Camundongos , Células Estromais , Timócitos/metabolismo , Timo
5.
Noncoding RNA ; 7(4)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842799

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), with 10.4 million new cases per year reported in the human population. Recent studies on the Mtb transcriptome have revealed the abundance of noncoding RNAs expressed at various phases of mycobacteria growth, in culture, in infected mammalian cells, and in patients. Among these noncoding RNAs are both small RNAs (sRNAs) between 50 and 350 nts in length and smaller RNAs (sncRNA) < 50 nts. In this review, we provide an up-to-date synopsis of the identification, designation, and function of these Mtb-encoded sRNAs and sncRNAs. The methodological advances including RNA sequencing strategies, small RNA antagonists, and locked nucleic acid sequence-specific RNA probes advancing the studies on these small RNA are described. Initial insights into the regulation of the small RNA expression and putative processing enzymes required for their synthesis and function are discussed. There are many open questions remaining about the biological and pathogenic roles of these small non-coding RNAs, and potential research directions needed to define the role of these mycobacterial noncoding RNAs are summarized.

6.
Front Cell Infect Microbiol ; 11: 678522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660333

RESUMO

Bead-beating within a DNA extraction protocol is critical for complete microbial cell lysis and accurate assessment of the abundance and composition of the microbiome. While the impact of bead-beating on the recovery of OTUs at the phylum and class level have been studied, its influence on species-level microbiome recovery is not clear. Recent advances in sequencing technology has allowed species-level resolution of the microbiome using full length 16S rRNA gene sequencing instead of smaller amplicons that only capture a few hypervariable regions of the gene. We sequenced the v3-v4 hypervariable region as well as the full length 16S rRNA gene in mouse and human stool samples and discovered major clusters of gut bacteria that exhibit different levels of sensitivity to bead-beating treatment. Full length 16S rRNA gene sequencing unraveled vast species diversity in the mouse and human gut microbiome and enabled characterization of several unclassified OTUs in amplicon data. Many species of major gut commensals such as Bacteroides, Lactobacillus, Blautia, Clostridium, Escherichia, Roseburia, Helicobacter, and Ruminococcus were identified. Interestingly, v3-v4 amplicon data classified about 50% of Ruminococcus reads as Ruminococcus gnavus species which showed maximum abundance in a 9 min beaten sample. However, the remaining 50% of reads could not be assigned to any species. Full length 16S rRNA gene sequencing data showed that the majority of the unclassified reads were Ruminococcus albus species which unlike R. gnavus showed maximum recovery in the unbeaten sample instead. Furthermore, we found that the Blautia hominis and Streptococcus parasanguinis species were differently sensitive to bead-beating treatment than the rest of the species in these genera. Thus, the present study demonstrates species level variations in sensitivity to bead-beating treatment that could only be resolved with full length 16S rRNA sequencing. This study identifies species of common gut commensals and potential pathogens that require minimum (0-1 min) or extensive (4-9 min) bead-beating for their maximal recovery.


Assuntos
Microbioma Gastrointestinal , Animais , Clostridiales , DNA Bacteriano/genética , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , RNA Ribossômico 16S/genética , Ruminococcus , Análise de Sequência de DNA , Streptococcus
7.
J Clin Immunol ; 41(5): 1031-1047, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33656624

RESUMO

PURPOSE: The human antibody repertoire forms in response to infections, the microbiome, vaccinations, and environmental exposures. The specificity of such antibody responses was compared among a cohort of toddlers to identify differences between seropositive versus seronegative responses. METHODS: An assessment of the serum IgM and IgG antibody reactivities in 197 toddlers of 1- and 2-years of age was performed with a microfluidic array containing 110 distinct antigens. Longitudinal profiling was done from years 1 to 2. Seropositivity to RNA and DNA viruses; bacteria; live attenuated, inactive, and subunit vaccines; and autoantigens was compared. A stratification was developed based on quantitative variations in the IgG responses. Clinical presentations and previously known genetic risk alleles for various immune system conditions were investigated in relation to IgG responses. RESULTS: IgG reactivities stratified toddlers into low, moderate, and high responder groups. The high group (17%) had elevated IgG responses to multiple RNA and DNA viruses (e.g., respiratory syncytial virus, Epstein-Barr virus, adenovirus, Coxsackievirus) and this correlated with increased responses to live attenuated viral vaccines and certain autoantigens. This high group was more likely to be associated with gestational diabetes and an older age. Genetic analyses identified polymorphisms in the IL2RB, TNFSF4, and INS genes in two high responder individuals that were associated with their elevated cytokine levels and clinical history of eczema and asthma. CONCLUSION: Serum IgG profiling of toddlers reveals correlations between the magnitude of the antibody responses towards viruses, live attenuated vaccines, and certain autoantigens. A low responder group had much weaker responses overall, including against vaccines. The serum antibody screen also identifies individuals with IgG responses to less common infections (West Nile virus, parvovirus, tuberculosis). The characterization of the antibody responses in combination with the identification of genetic risk alleles provides an opportunity to identify children with increased risk of clinical disease.


Assuntos
Anticorpos Antivirais/sangue , Autoantígenos/imunologia , Bactérias/imunologia , Vírus de DNA/imunologia , Imunoglobulina G/sangue , Vírus de RNA/imunologia , Vacinas/imunologia , Pré-Escolar , Citocinas/sangue , Feminino , Genótipo , Humanos , Imunoglobulina M/sangue , Lactente , Masculino , Técnicas Analíticas Microfluídicas
8.
Clin Immunol ; 224: 108662, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412294

RESUMO

X-linked severe combined immunodeficiency (X-SCID) is a disorder of adaptive immunity caused by mutations in the IL-2 receptor common gamma chain gene resulting in deficiencies of T and natural killer cells, coupled with severe dysfunction in B cells. X-SCID is lethal without allogeneic stem cell transplant or gene therapy due to opportunistic infections. An infant with X-SCID became infected with SARS-CoV-2 while awaiting transplant. The patient developed severe hepatitis without the respiratory symptoms typical of COVID-19. He was treated with convalescent plasma, and thereafter was confirmed to have SARS-CoV-2 specific antibodies, as detected with a microfluidic antigen array. After resolution of the hepatitis, he received a haploidentical CD34 selected stem cell transplant, without conditioning, from his father who had recovered from COVID-19. SARS CoV-2 was detected via RT-PCR on nasopharyngeal swabs until 61 days post transplantation. He successfully engrafted donor T and NK cells, and continues to do well clinically.


Assuntos
COVID-19/complicações , COVID-19/terapia , Hepatite/virologia , Imunodeficiência Combinada Severa/complicações , Humanos , Imunização Passiva/métodos , Lactente , Masculino , SARS-CoV-2 , Soroterapia para COVID-19
10.
Genome Biol ; 21(1): 281, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213505

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is a clinically heterogeneous autoimmune disease characterized by the development of anti-nuclear antibodies. Susceptibility to SLE is multifactorial, with a combination of genetic and environmental risk factors contributing to disease development. Like other polygenic diseases, a significant proportion of estimated SLE heritability is not accounted for by common disease alleles analyzed by SNP array-based GWASs. Death-associated protein 1 (DAP1) was implicated as a candidate gene in a previous familial linkage study of SLE and rheumatoid arthritis, but the association has not been explored further. RESULTS: We perform deep sequencing across the DAP1 genomic segment in 2032 SLE patients, and healthy controls, and discover a low-frequency functional haplotype strongly associated with SLE risk in multiple ethnicities. We find multiple cis-eQTLs embedded in a risk haplotype that progressively downregulates DAP1 transcription in immune cells. Decreased DAP1 transcription results in reduced DAP1 protein in peripheral blood mononuclear cells, monocytes, and lymphoblastoid cell lines, leading to enhanced autophagic flux in immune cells expressing the DAP1 risk haplotype. Patients with DAP1 risk allele exhibit significantly higher autoantibody titers and altered expression of the immune system, autophagy, and apoptosis pathway transcripts, indicating that the DAP1 risk allele mediates enhanced autophagy, leading to the survival of autoreactive lymphocytes and increased autoantibody. CONCLUSIONS: We demonstrate how targeted sequencing captures low-frequency functional risk alleles that are missed by SNP array-based studies. SLE patients with the DAP1 genotype have distinct autoantibody and transcription profiles, supporting the dissection of SLE heterogeneity by genetic analysis.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Autoimunidade/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Lúpus Eritematoso Sistêmico/genética , Alelos , Artrite Reumatoide , Autofagia , Células Dendríticas , Regulação para Baixo , Expressão Gênica , Perfilação da Expressão Gênica , Frequência do Gene , Predisposição Genética para Doença/genética , Genótipo , Humanos , Leucócitos Mononucleares , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência
11.
Front Microbiol ; 11: 1631, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849337

RESUMO

Nearly one third of the world's population is infected with Mycobacterium tuberculosis (Mtb). While much work has focused on the role of different Mtb encoded proteins in pathogenesis, recent studies have revealed that Mtb also transcribes many noncoding RNAs whose functions remain poorly characterized. We performed RNA sequencing and identified a subset of Mtb H37Rv-encoded small RNAs (<30 nts in length) that were produced in infected macrophages. Designated as smaller noncoding RNAs (sncRNAs), three of these predominated the read counts. Each of the three, sncRNA-1, sncRNA-6, and sncRNA-8 had surrounding sequences with predicted stable secondary RNA stem loops. Site-directed mutagenesis of the precursor sequences suggest the existence of a hairpin loop dependent RNA processing mechanism. A functional assessment of sncRNA-1 suggested that it positively regulated two mycobacterial transcripts involved in oleic acid biosynthesis. Complementary loss- and gain- of-function approaches revealed that sncRNA-1 positively supports Mtb growth and survival in nutrient-depleted cultures as well as in infected macrophages. Overall, the findings reveal that Mtb produces sncRNAs in infected cells, with sncRNA-1 modulating mycobacterial gene expression including genes coupled to oleic acid biogenesis.

12.
Front Immunol ; 11: 830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431714

RESUMO

22q11.2 deletion syndrome (DiGeorge), CHARGE syndrome, Nude/SCID and otofaciocervical syndrome type 2 (OTFCS2) are distinct clinical conditions in humans that can result in hypoplasia and occasionally, aplasia of the thymus. Thymic hypoplasia/aplasia is first suggested by absence or significantly reduced numbers of recent thymic emigrants, revealed in standard-of-care newborn screens for T cell receptor excision circles (TRECs). Subsequent clinical assessments will often indicate whether genetic mutations are causal to the low T cell output from the thymus. However, the molecular mechanisms leading to the thymic hypoplasia/aplasia in diverse human syndromes are not fully understood, partly because the problems of the thymus originate during embryogenesis. Rodent and Zebrafish models of these clinical syndromes have been used to better define the underlying basis of the clinical presentations. Results from these animal models are uncovering contributions of different cell types in the specification, differentiation, and expansion of the thymus. Cell populations such as epithelial cells, mesenchymal cells, endothelial cells, and thymocytes are variably affected depending on the human syndrome responsible for the thymic hypoplasia. In the current review, findings from the diverse animal models will be described in relation to the clinical phenotypes. Importantly, these results are suggesting new strategies for regenerating thymic tissue in patients with distinct congenital disorders.


Assuntos
Síndrome Brânquio-Otorrenal/complicações , Síndrome CHARGE/complicações , Síndrome de DiGeorge/complicações , Síndromes de Imunodeficiência/etiologia , Imunodeficiência Combinada Severa/complicações , Timo/anormalidades , Animais , Síndrome Brânquio-Otorrenal/genética , Síndrome Brânquio-Otorrenal/imunologia , Síndrome CHARGE/genética , Síndrome CHARGE/imunologia , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/imunologia , Modelos Animais de Doenças , Humanos , Síndromes de Imunodeficiência/imunologia , Camundongos , Mutação , Ratos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Timo/embriologia , Timo/imunologia , Peixe-Zebra
13.
J Clin Invest ; 129(11): 4724-4738, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566583

RESUMO

We report on 2 patients with compound heterozygous mutations in forkhead box N1 (FOXN1), a transcription factor essential for thymic epithelial cell (TEC) differentiation. TECs are critical for T cell development. Both patients had a presentation consistent with T-/loB+NK+ SCID, with normal hair and nails, distinct from the classic nude/SCID phenotype in individuals with autosomal-recessive FOXN1 mutations. To understand the basis of this phenotype and the effects of the mutations on FOXN1, we generated mice using CRISPR-Cas9 technology to genocopy mutations in 1 of the patients. The mice with the Foxn1 compound heterozygous mutations had thymic hypoplasia, causing a T-B+NK+ SCID phenotype, whereas the hair and nails of these mice were normal. Characterization of the functional changes due to the Foxn1 mutations revealed a 5-amino acid segment at the end of the DNA-binding domain essential for the development of TECs but not keratinocytes. The transcriptional activity of this Foxn1 mutant was partly retained, indicating a region that specifies TEC functions. Analysis of an additional 9 FOXN1 mutations identified in multiple unrelated patients revealed distinct functional consequences contingent on the impact of the mutation on the DNA-binding and transactivation domains of FOXN1.


Assuntos
Fatores de Transcrição Forkhead , Heterozigoto , Mutação , Imunodeficiência Combinada Severa , Timo , Animais , Sistemas CRISPR-Cas , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Masculino , Camundongos , Camundongos Nus , Domínios Proteicos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Imunodeficiência Combinada Severa/patologia , Timo/imunologia , Timo/patologia
14.
Dev Cell ; 49(4): 618-631.e5, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30982661

RESUMO

MicroRNAs (miRNAs) are processed from primary miRNA transcripts (pri-miRNAs), many of which are annotated as long noncoding RNAs (lncRNAs). We assessed whether MIR205HG, the host gene for miR-205, has independent functions as an lncRNA. Comparing mice with targeted deletions of MIR205HG and miR-205 revealed a functional role for the lncRNA in the anterior pituitary. Mice lacking MIR205HG had a temporal reduction in Pit1, growth hormone, and prolactin. This was mediated, in part, through the ability of this lncRNA to bind and regulate the transcriptional activity of Pit1 in conjunction with Zbtb20. Knockdown of MIR205HG in lactotropes decreased the expression of Pit1, Zbtb20, prolactin, and growth hormone, while its overexpression enhanced the levels of these transcripts. The effects of MIR205HG on the pituitary were independent of miR-205. The data support a role for MIR205HG as an lncRNA that regulates growth hormone and prolactin production in the anterior pituitary.


Assuntos
Hormônio do Crescimento/biossíntese , MicroRNAs/metabolismo , Adeno-Hipófise/metabolismo , Prolactina/biossíntese , RNA Longo não Codificante/metabolismo , Animais , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Prolactina/genética , Prolactina/metabolismo , RNA Longo não Codificante/genética , Ratos , Fator de Transcrição Pit-1/genética , Fator de Transcrição Pit-1/metabolismo , Transcriptoma
15.
Front Genet ; 10: 1365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117416

RESUMO

Chromosome 22q11.2 deletion syndrome (22q11.2del) is a complex, multi-organ disorder noted for its varying severity and penetrance among those affected. The clinical problems comprise congenital malformations; cardiac problems including outflow tract defects, hypoplasia of the thymus, hypoparathyroidism, and/or dysmorphic facial features. Additional clinical issues that can appear over time are autoimmunity, renal insufficiency, developmental delay, malignancy and neurological manifestations such as schizophrenia. The majority of individuals with 22q11.2del have a 3 Mb deletion of DNA on chromosome 22, leading to a haploinsufficiency of ~106 genes, which comprise coding RNAs, noncoding RNAs, and pseudogenes. The consequent haploinsufficiency of many of the coding genes are well described, including the key roles of T-box Transcription Factor 1 (TBX1) and DiGeorge Critical Region 8 (DGCR8) in the clinical phenotypes. However, the haploinsufficiency of these genes alone cannot account for the tremendous variation in the severity and penetrance of the clinical complications among those affected. Recent RNA and DNA sequencing approaches are uncovering novel genetic and epigenetic differences among 22q11.2del patients that can influence disease severity. In this review, the role of coding and non-coding genes, including microRNAs (miRNA) and long noncoding RNAs (lncRNAs), will be discussed in relation to their bearing on 22q11.2del with an emphasis on TBX1.

16.
J Clin Invest ; 127(3): 982-986, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28192371

RESUMO

Germline coding mutations in different telomere-related genes have been linked to autosomal-dominant familial pulmonary fibrosis. Individuals with these inherited mutations demonstrate incomplete penetrance of clinical phenotypes affecting the lung, blood, liver, skin, and other organs. Here, we describe the somatic acquisition of promoter mutations in telomerase reverse transcriptase (TERT) in blood leukocytes of approximately 5% of individuals with inherited loss-of-function coding mutations in TERT or poly(A)-specific ribonuclease (PARN), another gene linked to telomerase function. While these promoter mutations were initially identified as oncogenic drivers of cancer, individuals expressing the mutations have no history of cancer. Neither promoter mutation was found in population-based cohorts of similar or advanced age. The TERT promoter mutations were found more frequently in cis with the WT allele than the TERT coding sequence mutation. EBV-transformed lymphoblastoid B cell lines (LCLs) derived from subjects with TERT promoter mutations showed increased telomerase expression and activity compared with cell lines from family members with identical coding mutations. TERT promoter mutations resulted in an increased proliferation of LCLs and demonstrated positive selection over time. The persistence and recurrence of noncoding gain-of-function mutations in these cases suggests that telomerase activation is not only safely tolerated but also advantageous for clonal expansion.


Assuntos
Alelos , Linfócitos B/metabolismo , Seleção Clonal Mediada por Antígeno/genética , Mutação , Regiões Promotoras Genéticas , Telomerase , Linhagem Celular Transformada , Proliferação de Células/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Feminino , Humanos , Masculino , Telomerase/genética , Telomerase/metabolismo
17.
J Biol Chem ; 291(44): 23237-23247, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27646003

RESUMO

The thymus, an organ responsible for T cell development, is one of the more stress-sensitive tissues in the body. Stress, in the form of infections, radiation exposure, and steroids, impairs thymic epithelial cell (TEC) functions and induces the programmed cell death of immature thymocytes. MicroRNAs are small noncoding RNAs involved in tissue repair and homeostasis, with several supporting T cell development. We report that miR-205, an epithelial-specific miR, maintains thymopoiesis following inflammatory perturbations. Thus, the activation of diverse pattern recognition receptors in mice causes a more severe thymic hypoplasia and delayed T cell recovery when miR-205 is conditionally ablated in TECs. Gene expression comparisons in the TECs with/without miR-205 revealed a significant differential regulation of chemokine/chemokine receptor pathways, antigen processing components, and changes in the Wnt signaling system. This was partly a consequence of reduced expression of the transcriptional regulator of epithelial cell function, Forkhead Box N1 (Foxn1), and its two regulated targets, stem cell factor and ccl25, following stress. miR-205 mimics supplemented into miR-205-deficient fetal thymic organ cultures restored Foxn1 expression along with ccl25 and stem cell factor A number of putative targets of miR-205 were up-regulated in TECs lacking miR-205, consistent with an important role for this miR in supporting T cell development in response to stress.


Assuntos
Diferenciação Celular , Quimiocinas CC/metabolismo , Fatores de Transcrição Forkhead/genética , MicroRNAs/metabolismo , Fator de Células-Tronco/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Animais , Células Cultivadas , Quimiocinas CC/genética , Feminino , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fator de Células-Tronco/genética , Timócitos/citologia , Timócitos/metabolismo , Timo/citologia , Timo/crescimento & desenvolvimento , Timo/metabolismo
18.
Eur J Immunol ; 46(6): 1504-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26990433

RESUMO

Type I interferon (IFN-α/ß) plays a critical role in suppressing viral replication by driving the transcription of hundreds of interferon-sensitive genes (ISGs). While many ISGs are transcriptionally activated by the ISGF3 complex, the significance of other signaling intermediates in IFN-α/ß-mediated gene regulation remains elusive, particularly in rare cases of gene silencing. In human Th2 cells, IFN-α/ß signaling suppressed IL5 and IL13 mRNA expression during recall responses to T-cell receptor (TCR) activation. This suppression occurred through a rapid reduction in the rate of nascent transcription, independent of de novo expression of ISGs. Further, IFN-α/ß-mediated STAT4 activation was required for repressing the human IL5 gene, and disrupting STAT4 dimerization reversed this effect. This is the first demonstration of STAT4 acting as a transcriptional repressor in response to IFN-α/ß signaling and highlights the unique activity of this cytokine to acutely block the expression of an inflammatory cytokine in human T cells.


Assuntos
Regulação da Expressão Gênica , Memória Imunológica , Interleucina-5/genética , Fator de Transcrição STAT4/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Transcrição Gênica , Biomarcadores , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interferon beta/metabolismo , Interferon beta/farmacologia , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...