Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 181: 108256, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37862862

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of xenobiotics that are widely distributed throughout the aquatic environment. Many PFAS are possible thyroid hormone (TH) system disrupting compounds, because they have the capacity to -amongst other- inhibit the TH thyroxine (T4) from binding to its transport protein transthyretin (TTR). This study investigated the occurrence of TH-displacing activity in the Dutch water cycle, and more specifically, the contribution of PFAS to this effect. Over one year of monitoring data of 29 PFAS (linear and branched) showed the continuous presence of PFAS in drinking waters and their surface water sources. Secondly, the FITC-T4 and TTR-TRß-CALUX bioassays were mutually compared using positive (HPLC-grade water spiked with PFOA) and negative control samples (HPLC-grade water), as well as relative potency factors (RPFs) of up to 20 PFAS congeners. Both assays were found to be suitable for measuring TH-displacing activity in water samples. As a third aim, a field study was performed in the Dutch water cycle that was comprised of samples from drinking water, surface water, PFAS contaminated sites, and 2 wastewater treatment plants. All samples were analyzed with 1. chemical analysis for 29 PFAS, 2. the FITC-T4 bioassay, and 3. the TTR-TRß-CALUX bioassay. The bioassays mutually showed good correlation (R2 0.85). Bioanalytical equivalent concentrations (BEQ) based on chemically-determined concentrations and RPFs (BEQchem) revealed that analyzed PFAS only explained ≤4.1 % of their activity in water extracts measured by both bioassays (BEQbio). This indicated that as yet unknown compounds contribute to the majority of the measured TH-displacing activity. Moreover, water treatment processes (e.g. DW production from SW) showed a larger contribution of target PFAS to the BEQbio. This could be a first lead to identify unknown compounds that contribute to this activity, and as such, enable the assessment of possible risks associated by the occurrence of TH-displacing activity in water.


Assuntos
Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Fluoresceína-5-Isotiocianato , Hormônios Tireóideos , Glândula Tireoide , Bioensaio , Receptores beta dos Hormônios Tireóideos , Poluentes Químicos da Água/toxicidade
2.
Environ Toxicol Pharmacol ; 80: 103460, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32738293

RESUMO

Monitoring of chemical water quality is extremely challenging due to the large variety of compounds and the presence of biologically active compounds with unknown chemical identity. Previously, we developed a high resolution Effect-Directed Analysis (EDA) platform that combines liquid chromatography with high resolution mass spectrometry and parallel bioassay detection. In this study, the platform is combined with CALUX bioassays for (anti)androgenic, estrogenic and glucocorticoid activities, and the performance of the platform is evaluated. It appeared to render very repeatable results, with high recoveries of spiked compounds and high consistency between the mass spectrometric and bioassay results. Application of the platform to wastewater treatment plant effluent and surface water samples led to the identification of several compounds contributing to the measured activities. Eventually, a workflow is proposed for the application of the platform in a routine monitoring context. The workflow divides the platform into four phases, of which one to all can be performed depending on the research question and the results obtained. This allows one to make a balance between the effort put into the platform and the certainty and depth by which active compounds will be identified. The EDA platform is a valuable tool to identify unknown bioactive compounds, both in an academic setting as in the context of legislative, governmental or routine monitoring.


Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Hormônios Esteroides Gonadais , Rios/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Qualidade da Água , Bioensaio , Cromatografia Líquida de Alta Pressão , Hormônios Esteroides Gonadais/agonistas , Hormônios Esteroides Gonadais/antagonistas & inibidores , Limite de Detecção , Extração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA