Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 23(1): 96, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35421995

RESUMO

Genome-wide association studies have identified 3p21.31 as the main risk locus for severe COVID-19, although underlying mechanisms remain elusive. We perform an epigenomic dissection of 3p21.31, identifying a CTCF-dependent tissue-specific 3D regulatory chromatin hub that controls the activity of several chemokine receptor genes. Risk SNPs colocalize with regulatory elements and are linked to increased expression of CCR1, CCR2 and CCR5 in monocytes and macrophages. As excessive organ infiltration of inflammatory monocytes and macrophages is a hallmark of severe COVID-19, our findings provide a rationale for the genetic association of 3p21.31 variants with elevated risk of hospitalization upon SARS-CoV-2 infection.


Assuntos
COVID-19 , Monócitos , COVID-19/genética , Estudo de Associação Genômica Ampla , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , SARS-CoV-2
2.
Circulation ; 145(8): 606-619, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35113653

RESUMO

BACKGROUND: The pathogenic missense variant p.G125R in TBX5 (T-box transcription factor 5) causes Holt-Oram syndrome (also known as hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. METHODS: We analyzed ECGs of an extended family pedigree of Holt-Oram syndrome patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiologic analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single-nuclei and tissue RNA sequencing), and epigenetic profiling (assay for transposase-accessible chromatin using sequencing, H3K27ac [histone H3 lysine 27 acetylation] CUT&RUN [cleavage under targets and release under nuclease sequencing]). RESULTS: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in Holt-Oram syndrome patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles, and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials were prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared with controls. Transcriptional profiling of atria revealed the most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and noncoding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R-sensitive, putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA-binding motifs of members of the SP (specificity protein) and KLF (Krüppel-like factor) families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, alters transcriptional regulation, and changes cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. CONCLUSIONS: Our data reveal that a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.


Assuntos
Anormalidades Múltiplas , Regulação da Expressão Gênica , Cardiopatias Congênitas , Comunicação Interatrial , Heterozigoto , Deformidades Congênitas das Extremidades Inferiores , Mutação de Sentido Incorreto , Linhagem , Proteínas com Domínio T , Deformidades Congênitas das Extremidades Superiores , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Substituição de Aminoácidos , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Feminino , Átrios do Coração/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Comunicação Interatrial/genética , Comunicação Interatrial/metabolismo , Humanos , Deformidades Congênitas das Extremidades Inferiores/genética , Deformidades Congênitas das Extremidades Inferiores/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Deformidades Congênitas das Extremidades Superiores/genética , Deformidades Congênitas das Extremidades Superiores/metabolismo
3.
Circ Res ; 127(1): 34-50, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32717170

RESUMO

Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.


Assuntos
Fibrilação Atrial/genética , Epigênese Genética , Redes Reguladoras de Genes , Animais , Fibrilação Atrial/metabolismo , Loci Gênicos , Humanos , Transcriptoma
4.
Circ Res ; 127(2): 229-243, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32248749

RESUMO

RATIONALE: Genome-wide association studies have identified a large number of common variants (single-nucleotide polymorphisms) associated with atrial fibrillation (AF). These variants are located mainly in noncoding regions of the genome and likely include variants that modulate the function of transcriptional regulatory elements (REs) such as enhancers. However, the actual REs modulated by variants and the target genes of such REs remain to be identified. Thus, the biological mechanisms by which genetic variation promotes AF has thus far remained largely unexplored. OBJECTIVE: To identify REs in genome-wide association study loci that are influenced by AF-associated variants. METHODS AND RESULTS: We screened 2.45 Mbp of human genomic DNA containing 12 strongly AF-associated loci for RE activity using self-transcribing active regulatory region sequencing and a recently generated monoclonal line of conditionally immortalized rat atrial myocytes. We identified 444 potential REs, 55 of which contain AF-associated variants (P<10-8). Subsequently, using an adaptation of the self-transcribing active regulatory region sequencing approach, we identified 24 variant REs with allele-specific regulatory activity. By mining available chromatin conformation data, the possible target genes of these REs were mapped. To define the physiological function and target genes of such REs, we deleted the orthologue of an RE containing noncoding variants in the Hcn4 (potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4) locus of the mouse genome. Mice heterozygous for the RE deletion showed bradycardia, sinus node dysfunction, and selective loss of Hcn4 expression. CONCLUSIONS: We have identified REs at multiple genetic loci for AF and found that loss of an RE at the HCN4 locus results in sinus node dysfunction and reduced gene expression. Our approach can be broadly applied to facilitate the identification of human disease-relevant REs and target genes at cardiovascular genome-wide association studies loci.


Assuntos
Fibrilação Atrial/genética , Elementos Facilitadores Genéticos , Animais , Fibrilação Atrial/metabolismo , Loci Gênicos , Genoma Humano , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo
5.
Nat Commun ; 10(1): 4755, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628324

RESUMO

Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized. We optimize EMERGE enhancer prediction and use accessible chromatin profiles of human atrial cardiomyocytes to more accurately predict cardiac regulatory elements and identify hundreds of sub-threshold variants that co-localize with regulatory elements. Removal of mouse homologues of atrial fibrillation-associated regions in vivo uncovers a distal regulatory region involved in Gja1 (Cx43) expression. Our analyses provide a shortlist of genes likely affected by atrial fibrillation-associated variants and provide variant regulatory elements in each region that link genetic variation and target gene regulation, helping to focus future investigations.


Assuntos
Fibrilação Atrial/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linhagem Celular , Cromatina/genética , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Variação Genética , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
6.
Crit Rev Clin Lab Sci ; 52(3): 150-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955567

RESUMO

Cardiovascular disease (CVD) is the leading cause of death in modern society. Interestingly, the risk of developing CVD varies between different ethnic groups. A particularly high risk is faced by South Asians, representing over one-fifth of the world's population. Here, we review potential factors contributing to the increased cardiovascular risk in the South Asian population and discuss novel therapeutic strategies based on recent insights. In South Asians, classical ('metabolic') risk factors associated with CVD are highly prevalent and include central obesity, insulin resistance, type 2 diabetes, and dyslipidemia. A contributing factor that may underlie the development of this disadvantageous metabolic phenotype is the presence of a lower amount of brown adipose tissue (BAT) in South Asian subjects, resulting in lower energy expenditure and lower lipid oxidation and glucose uptake. As it has been established that the increased prevalence of classical risk factors in South Asians cannot fully explain their increased risk for CVD, other non-classical risk factors must underlie this residual risk. In South Asians, the prevalence of "inflammatory" risk factors including visceral adipose tissue inflammation, endothelial dysfunction, and HDL dysfunction are higher compared with Caucasians. We conclude that a potential novel therapy to lower CVD risk in the South Asian population is to enhance BAT volume or its activity in order to diminish classical risk factors. Furthermore, anti-inflammatory therapy may lower non-classical risk factors in this population and the combination of both strategies may be especially effective.


Assuntos
Tecido Adiposo Marrom/metabolismo , Adiposidade , Doenças Cardiovasculares/metabolismo , Paniculite/metabolismo , Tecido Adiposo Marrom/imunologia , Adiposidade/etnologia , Ásia/epidemiologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etnologia , Doenças Cardiovasculares/etiologia , Metabolismo Energético , Humanos , Paniculite/epidemiologia , Paniculite/etnologia , Paniculite/fisiopatologia , Prevalência , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...