Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 7(4): e0042322, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35950759

RESUMO

The fission yeast, Schizosaccharomyces pombe, is a popular eukaryal model organism for cell division and cell cycle studies. With this extensive knowledge of its cell and molecular biology, S. pombe also holds promise for use in metabolism research and industrial applications. However, unlike the baker's yeast, Saccharomyces cerevisiae, a major workhorse in these areas, cell physiology and metabolism of S. pombe remain less explored. One way to advance understanding of organism-specific metabolism is construction of computational models and their use for hypothesis testing. To this end, we leverage existing knowledge of S. cerevisiae to generate a manually curated high-quality reconstruction of S. pombe's metabolic network, including a proteome-constrained version of the model. Using these models, we gain insights into the energy demands for growth, as well as ribosome kinetics in S. pombe. Furthermore, we predict proteome composition and identify growth-limiting constraints that determine optimal metabolic strategies under different glucose availability regimes and reproduce experimentally determined metabolic profiles. Notably, we find similarities in metabolic and proteome predictions of S. pombe with S. cerevisiae, which indicate that similar cellular resource constraints operate to dictate metabolic organization. With these cases, we show, on the one hand, how these models provide an efficient means to transfer metabolic knowledge from a well-studied to a lesser-studied organism, and on the other, how they can successfully be used to explore the metabolic behavior and the role of resource allocation in driving different strategies in fission yeast. IMPORTANCE Our understanding of microbial metabolism relies mostly on the knowledge we have obtained from a limited number of model organisms, and the diversity of metabolism beyond the handful of model species thus remains largely unexplored in mechanistic terms. Computational modeling of metabolic networks offers an attractive platform to bridge the knowledge gap and gain new insights into physiology of lesser-studied organisms. Here we showcase an example of successful knowledge transfer from the budding yeast Saccharomyces cerevisiae to a popular model organism in molecular and cell biology, fission yeast Schizosaccharomyces pombe, using computational models.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Ciclo Celular , Alocação de Recursos
2.
Mol Syst Biol ; 17(4): e10093, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33821549

RESUMO

Cells adapt to different conditions via gene expression that tunes metabolism for maximal fitness. Constraints on cellular proteome may limit such expression strategies and introduce trade-offs. Resource allocation under proteome constraints has explained regulatory strategies in bacteria. It is unclear, however, to what extent these constraints can predict evolutionary changes, especially for microorganisms that evolved under nutrient-rich conditions, i.e., multiple available nitrogen sources, such as Lactococcus lactis. Here, we present a proteome-constrained genome-scale metabolic model of L. lactis (pcLactis) to interpret growth on multiple nutrients. Through integration of proteomics and flux data, in glucose-limited chemostats, the model predicted glucose and arginine uptake as dominant constraints at low growth rates. Indeed, glucose and arginine catabolism were found upregulated in evolved mutants. At high growth rates, pcLactis correctly predicted the observed shutdown of arginine catabolism because limited proteome availability favored lactate for ATP production. Thus, our model-based analysis is able to identify and explain the proteome constraints that limit growth rate in nutrient-rich environments and thus form targets of fitness improvement.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Aptidão Genética , Glucose/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Proteoma/metabolismo , Trifosfato de Adenosina/metabolismo , Evolução Biológica , Modelos Biológicos , Mutação/genética , Reprodutibilidade dos Testes
3.
Metabolites ; 11(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919383

RESUMO

Genome-scale stoichiometric modeling methods, in particular Flux Balance Analysis (FBA) and variations thereof, are widely used to investigate cell metabolism and to optimize biotechnological processes. Given (1) a metabolic network, which can be reconstructed from an organism's genome sequence, and (2) constraints on reaction rates, which may be based on measured nutrient uptake rates, FBA predicts which reactions maximize an objective flux, usually the production of cell components. Although FBA solutions may accurately predict the metabolic behavior of a cell, the actual flux predictions are often hard to interpret. This is especially the case for conditions with many constraints, such as for organisms growing in rich nutrient environments: it remains unclear why a certain solution was optimal. Here, we rationalize FBA solutions by explaining for which properties the optimal combination of metabolic strategies is selected. We provide a graphical formalism in which the selection of solutions can be visualized; we illustrate how this perspective provides a glimpse of the logic that underlies genome-scale modeling by applying our formalism to models of various sizes.

4.
FEMS Microbiol Rev ; 44(6): 804-820, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32990728

RESUMO

Lactococcus lactis serves as a paradigm organism for the lactic acid bacteria (LAB). Extensive research into the molecular biology, metabolism and physiology of several model strains of this species has been fundamental for our understanding of the LAB. Genomic studies have provided new insights into the species L. lactis, including the resolution of the genetic basis of its subspecies division, as well as the control mechanisms involved in the fine-tuning of growth rate and energy metabolism. In addition, it has enabled novel approaches to study lactococcal lifestyle adaptations to the dairy application environment, including its adjustment to near-zero growth rates that are particularly relevant in the context of cheese ripening. This review highlights various insights in these areas and exemplifies the strength of combining experimental evolution with functional genomics and bacterial physiology research to expand our fundamental understanding of the L. lactis lifestyle under different environmental conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Genoma Bacteriano/genética , Lactococcus lactis/metabolismo , Indústria de Laticínios , Meio Ambiente , Lactococcus lactis/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...