Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1395715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113790

RESUMO

Introduction: Electrical stimulation has been used as a promising approach in bone repair for several decades. However, the therapeutic use is hampered by inconsistent results due to a lack of standardized application protocols. Recently, electrical stimulation has been considered for the improvement of the osseointegration of dental and endoprosthetic implants. Methods: In a pilot study, the suitability of a specifically developed device for electrical stimulation in situ was assessed. Here, the impact of alternating electric fields on implant osseointegration was tested in a gap model using New Zealand White Rabbits. Stimulation parameters were transmitted to the device via a radio transceiver, thus allowing for real-time monitoring and, if required, variations of stimulation parameters. The effect of electrical stimulation on implant osseointegration was quantified by the bone-implant contact (BIC) assessed by histomorphometric (2D) and µCT (3D) analysis. Results: Direct stimulation with an alternating electric potential of 150 mV and 20 Hz for three times a day (45 min per unit) resulted in improved osseointegration of the triangular titanium implants in the tibiae of the rabbits. The ratio of bone area in histomorphometry (2D analysis) and bone volume (3D analysis) around the implant were significantly increased after stimulation compared to the untreated controls at sacrifice 84 days after implantation. Conclusion: The developed experimental design of an electrical stimulation system, which was directly located in the defect zone of rabbit tibiae, provided feedback regarding the integrity of the stimulation device throughout an experiment and would allow variations in the stimulation parameters in future studies. Within this study, electrical stimulation resulted in enhanced implant osseointegration. However, direct electrical stimulation of bone tissue requires the definition of dose-response curves and optimal duration of treatment, which should be the subject of subsequent studies.

3.
Int J Numer Method Biomed Eng ; : e3097, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29736927

RESUMO

A numerical model for the adhesion of osteoblasts on titanium micropillar structures is suggested, and a function representing the concentration level of the adhesion on the pillars is constructed based on experimental observation. The introduction of this function helps a well-known bio-chemo-mechanical model to better predict the formation of actin in osteoblasts when they are laid on arrays of titanium micro-pillars of various size attached to silicon substrate. A parameter study suggests that each pillar is associated with a different pattern of adhesion. Our finding emphasises a capability of the bio-chemo-mechanical model that it can well explain the strong influence of the boundary condition on the formation of actin within the cells.

4.
Neural Comput ; 29(11): 2955-2978, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28957018

RESUMO

Microelectrode arrays serve as an indispensable tool in electro-physiological research to study the electrical activity of neural cells, enabling measurements of single cell as well as network communication analysis. Recent experimental studies have reported that the neuronal geometry has an influence on electrical signaling and extracellular recordings. However, the corresponding mechanisms are not yet fully understood and require further investigation. Allowing systematic parameter studies, computational modeling provides the opportunity to examine the underlying effects that influence extracellular potentials. In this letter, we present an in silico single cell model to analyze the effect of geometrical variability on the extracellular electric potentials. We describe finite element models of a single neuron with varying geometric complexity in three-dimensional space. The electric potential generation of the neuron is modeled using Hodgkin-Huxley equations. The signal propagation is described with electro-quasi-static equations, and results are compared with corresponding cable equation descriptions. Our results show that both the geometric dimensions and the distribution of ion channels of a neuron are critical factors that significantly influence both the amplitude and shape of extracellular potentials.


Assuntos
Espaço Extracelular/fisiologia , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/citologia , Neurônios/fisiologia , Animais , Simulação por Computador , Análise de Elementos Finitos , Microeletrodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-22263808

RESUMO

Contact between a charged metal surface and an electrolyte implies a particular ion distribution near the charged surface, i.e. the electrical double layer. In this mini review, different mean-field models of relative (effective) permittivity are described within a simple lattice model, where the orientational ordering of water dipoles in the saturation regime is taken into account. The Langevin-Poisson-Boltzmann (LPB) model of spatial variation of the relative permittivity for point-like ions is described and compared to a more general Langevin-Bikerman (LB) model of spatial variation of permittivity for finite-sized ions. The Bikerman model and the Poisson-Boltzmann model are derived as limiting cases. It is shown that near the charged surface, the relative permittivity decreases due to depletion of water molecules (volume-excluded effect) and orientational ordering of water dipoles (saturation effect). At the end, the LPB and LB models are generalised by also taking into account the cavity field.


Assuntos
Eletrólitos/química , Metais/química , Modelos Químicos , Eletricidade , Propriedades de Superfície , Água
7.
Comput Methods Biomech Biomed Engin ; 14(5): 469-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21516531

RESUMO

Due to oxidation and adsorption of chloride and hydroxyl anions, the surface of titanium (Ti) implants is negatively charged. A possible mechanism of the attractive interaction between the negatively charged Ti surface and the negatively charged osteoblasts is described theoretically. It is shown that adhesion of positively charged proteins with internal charge distribution may give rise to attractive interaction between the Ti surface and the osteoblast membrane. A dynamic model of the osteoblast attachment is presented in order to study the impact of geometrically structured Ti surfaces on the osteoblasts attachment. It is indicated that membrane-bound protein complexes (PCs) may increase the membrane protrusion growth between the osteoblast and the grooves on titanium (Ti) surface and thereby facilitate the adhesion of osteoblasts to the Ti surface. On the other hand, strong local adhesion due to electrostatic forces may locally trap the osteoblast membrane and hinder the further spreading of osteointegration boundary. We suggest that the synergy between these two processes is responsible for successful osteointegration along the titanium surface implant.


Assuntos
Modelos Biológicos , Osseointegração/fisiologia , Osteoblastos/fisiologia , Titânio , Materiais Biocompatíveis , Fenômenos Biomecânicos , Adesão Celular/fisiologia , Simulação por Computador , Humanos , Método de Monte Carlo , Próteses e Implantes , Proteínas/metabolismo , Eletricidade Estática , Propriedades de Superfície
8.
Mini Rev Med Chem ; 11(4): 272-82, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21428902

RESUMO

Previous studies have shown that cellular function depends on rod-like membrane proteins, among them Bin/Amphiphysin/Rvs (BAR) proteins may curve the membrane leading to physiologically important membrane invaginations and membrane protrusions. The membrane shaping induced by BAR proteins has a major role in various biological processes such as cell motility and cell growth. Different models of binding of BAR domains to the lipid bilayer are described. The binding includes hydrophobic insertion loops and electrostatic interactions between basic amino acids at the concave region of the BAR domain and negatively charged lipids. To shed light on the elusive binding dynamics, a novel experiment is proposed to expand the technique of single-molecule AFM for the traction of binding energy of a single BAR domain.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas Adaptadoras de Transdução de Sinal/química , Extensões da Superfície Celular/química , Proteínas do Tecido Nervoso/química , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA