Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol Res ; 2020: 7680131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509883

RESUMO

BACKGROUND: Recent clinical trials using regulatory T cells (Treg) support the therapeutic potential of Treg-based therapy in transplantation and autoinflammatory diseases. Despite these clinical successes, the effect of Treg on inflamed tissues, as well as their impact on immune effector function in vivo, is poorly understood. Therefore, we here evaluated the effect of human Treg injection on cutaneous inflammatory processes in vivo using a humanized mouse model of human skin inflammation (huPBL-SCID-huSkin). METHODS: SCID beige mice were transplanted with human skin followed by intraperitoneal (IP) injection of 20-40 × 106 allogeneic human PBMCs. This typically results in human skin inflammation as indicated by epidermal thickening (hyperkeratosis) and changes in dermal inflammatory markers such as the antimicrobial peptide hBD2 and epidermal barrier cytokeratins K10 and K16, as well as T cell infiltration in the dermis. Ex vivo-expanded human Treg were infused intraperitoneally. Human cutaneous inflammation and systemic immune responses were analysed by immunohistochemistry and flow cytometry. RESULTS: We confirmed that human Treg injection inhibits skin inflammation and the influx of effector T cells. As a novel finding, we demonstrate that human Treg injection led to a reduction of IL-17-secreting cells while promoting a relative increase in immunosuppressive FOXP3+ Treg in the human skin, indicating active immune regulation in controlling the local proinflammatory response. Consistent with the local control (skin), systemically (splenocytes), we observed that Treg injection led to lower frequencies of IFNγ and IL-17A-expressing human T cells, while a trend towards enrichment of FOXP3+ Treg was observed. CONCLUSION: Taken together, we demonstrate that inhibition of skin inflammation by Treg infusion, next to a reduction of infiltrating effector T cells, is mediated by restoring both the local and systemic balance between cytokine-producing effector T cells and immunoregulatory T cells. This work furthers our understanding of Treg-based immunotherapy.


Assuntos
Imunoterapia Adotiva/métodos , Inflamação/imunologia , Transplante de Pele , Pele/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Camundongos , Camundongos SCID , Linfócitos T Reguladores/transplante , Transplante Heterólogo
2.
Bone Marrow Transplant ; 39(9): 537-45, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17351648

RESUMO

Graft-versus-host-disease (GVHD) is the most common cause of poor outcome after allogeneic stem cell transplantation (SCT). Of late, exploitation of FOXP3(+) regulatory T-cell (T(REG)) function is emerging as a promising strategy in suppression of GVHD, while preserving graft-versus-leukemia (GVL). Cyclosporine and rapamycin reduce the expansion of effector T cells by blocking interleukin (IL)-2, but signaling by IL-2 is pivotal for T(REG) homeostasis. The resolution of GVHD is critically dependent on thymus-dependent reconstitution of the immunoregulatory system. Thus, there has been concern about the impact of blocking IL-2 signaling by immunosuppressive agents on T(REG) homeostasis. Here we demonstrate in a mouse model that in contrast to rapamycin, cyclosporine compromises not only the thymic generation of CD4(+)CD25(+)FoxP3(+) T cells but also their homeostatic behavior in peripheral immune compartments. Treatment with cyclosporine resulted in a sharp reduction of peripheral CD25(+)FoxP3(+) T cells in all immune compartments studied. Prolonged rapamycin treatment allowed for thymic generation of CD4(+)FoxP3(+) T cells, whereas treatment with cyclosporine led to a reduced generation of these cells. In conclusion, cyclosporine and rapamycin differentially affect homeostasis of CD4(+)FoxP3(+) T(REG) in vivo. As peripheral tolerance induction is a prerequisite for successful treatment outcome after allogeneic SCT, these findings are of potential clinical relevance.


Assuntos
Ciclosporina/farmacologia , Fatores de Transcrição Forkhead , Doença Enxerto-Hospedeiro/tratamento farmacológico , Imunossupressores/farmacologia , Sirolimo/farmacologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/imunologia , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Reguladores/patologia , Timo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA