Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(7)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35890010

RESUMO

Mycobacterium bovis (M. bovis) infection in wildlife, including lions (Panthera leo), has implications for individual and population health. Tools for the detection of infected lions are needed for diagnosis and disease surveillance. This study aimed to evaluate the Mabtech Cat interferon gamma (IFN-γ) ELISABasic kit for detection of native lion IFN-γ in whole blood samples stimulated using the QuantiFERON® TB Gold Plus (QFT) platform as a potential diagnostic assay. The ELISA was able to detect lion IFN-γ in mitogen-stimulated samples, with good parallelism, linearity, and a working range of 15.6-500 pg/mL. Minimal matrix interference was observed in the recovery of domestic cat rIFN-γ in lion plasma. Both intra- and inter-assay reproducibility had a coefficient of variation less than 10%, while the limit of detection and quantification were 7.8 pg/mL and 31.2 pg/mL, respectively. The diagnostic performance of the QFT Mabtech Cat interferon gamma release assay (IGRA) was determined using mycobacterial antigen-stimulated samples from M. bovis culture-confirmed infected (n = 8) and uninfected (n = 4) lions. A lion-specific cut-off value (33 pg/mL) was calculated, and the sensitivity and specificity were determined to be 87.5% and 100%, respectively. Although additional samples should be tested, the QFT Mabtech Cat IGRA could identify M. bovis-infected African lions.

2.
Front Immunol ; 13: 814031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237267

RESUMO

Exposure and immunity to generalist pathogens differ among host species and vary across spatial scales. Anthrax, caused by a multi-host bacterial pathogen, Bacillus anthracis, is enzootic in Kruger National Park (KNP), South Africa and Etosha National Park (ENP), Namibia. These parks share many of the same potential host species, yet the main anthrax host in one (greater kudu (Tragelaphus strepsiceros) in KNP and plains zebra (Equus quagga) in ENP) is only a minor host in the other. We investigated species and spatial patterns in anthrax mortalities, B. anthracis exposure, and the ability to neutralize the anthrax lethal toxin to determine if observed host mortality differences between locations could be attributed to population-level variation in pathogen exposure and/or immune response. Using serum collected from zebra and kudu in high and low incidence areas of each park (18- 20 samples/species/area), we estimated pathogen exposure from anti-protective antigen (PA) antibody response using enzyme-linked immunosorbent assay (ELISA) and lethal toxin neutralization with a toxin neutralization assay (TNA). Serological evidence of pathogen exposure followed mortality patterns within each system (kudus: 95% positive in KNP versus 40% in ENP; zebras: 83% positive in ENP versus 63% in KNP). Animals in the high-incidence area of KNP had higher anti-PA responses than those in the low-incidence area, but there were no significant differences in exposure by area within ENP. Toxin neutralizing ability was higher for host populations with lower exposure prevalence, i.e., higher in ENP kudus and KNP zebras than their conspecifics in the other park. These results indicate that host species differ in their exposure to and adaptive immunity against B. anthracis in the two parks. These patterns may be due to environmental differences such as vegetation, rainfall patterns, landscape or forage availability between these systems and their interplay with host behavior (foraging or other risky behaviors), resulting in differences in exposure frequency and dose, and hence immune response.


Assuntos
Antílopes , Antraz , Bacillus anthracis , Animais , Equidae , Herbivoria , Imunidade , Parques Recreativos
3.
J R Soc Interface ; 19(186): 20210692, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042386

RESUMO

The combined use of global positioning system (GPS) technology and motion sensors within the discipline of movement ecology has increased over recent years. This is particularly the case for instrumented wildlife, with many studies now opting to record parameters at high (infra-second) sampling frequencies. However, the detail with which GPS loggers can elucidate fine-scale movement depends on the precision and accuracy of fixes, with accuracy being affected by signal reception. We hypothesized that animal behaviour was the main factor affecting fix inaccuracy, with inherent GPS positional noise (jitter) being most apparent during GPS fixes for non-moving locations, thereby producing disproportionate error during rest periods. A movement-verified filtering (MVF) protocol was constructed to compare GPS-derived speed data with dynamic body acceleration, to provide a computationally quick method for identifying genuine travelling movement. This method was tested on 11 free-ranging lions (Panthera leo) fitted with collar-mounted GPS units and tri-axial motion sensors recording at 1 and 40 Hz, respectively. The findings support the hypothesis and show that distance moved estimates were, on average, overestimated by greater than 80% prior to GPS screening. We present the conceptual and mathematical protocols for screening fix inaccuracy within high-resolution GPS datasets and demonstrate the importance that MVF has for avoiding inaccurate and biased estimates of movement.


Assuntos
Sistemas de Informação Geográfica , Leões , Animais , Animais Selvagens , Ecologia , Movimento
4.
Anim Biotelemetry ; 9: 43, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34900262

RESUMO

BACKGROUND: Understanding what animals do in time and space is important for a range of ecological questions, however accurate estimates of how animals use space is challenging. Within the use of animal-attached tags, radio telemetry (including the Global Positioning System, 'GPS') is typically used to verify an animal's location periodically. Straight lines are typically drawn between these 'Verified Positions' ('VPs') so the interpolation of space-use is limited by the temporal and spatial resolution of the system's measurement. As such, parameters such as route-taken and distance travelled can be poorly represented when using VP systems alone. Dead-reckoning has been suggested as a technique to improve the accuracy and resolution of reconstructed movement paths, whilst maximising battery life of VP systems. This typically involves deriving travel vectors from motion sensor systems and periodically correcting path dimensions for drift with simultaneously deployed VP systems. How often paths should be corrected for drift, however, has remained unclear. METHODS AND RESULTS: Here, we review the utility of dead-reckoning across four contrasting model species using different forms of locomotion (the African lion Panthera leo, the red-tailed tropicbird Phaethon rubricauda, the Magellanic penguin Spheniscus magellanicus, and the imperial cormorant Leucocarbo atriceps). Simulations were performed to examine the extent of dead-reckoning error, relative to VPs, as a function of Verified Position correction (VP correction) rate and the effect of this on estimates of distance moved. Dead-reckoning error was greatest for animals travelling within air and water. We demonstrate how sources of measurement error can arise within VP-corrected dead-reckoned tracks and propose advancements to this procedure to maximise dead-reckoning accuracy. CONCLUSIONS: We review the utility of VP-corrected dead-reckoning according to movement type and consider a range of ecological questions that would benefit from dead-reckoning, primarily concerning animal-barrier interactions and foraging strategies.

5.
Int J Parasitol Parasites Wildl ; 14: 335-340, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898235

RESUMO

Reports in the literature indicate that species of Hepatozoon commonly occur in African wild dog (AWD) or painted wolf (Lycaon pictus) populations. These findings were based on examination of blood smears by microscopy, and specific identity of the Hepatozoon sp. gamonts seen could not be confirmed. We present the first in-depth molecular data on the prevalence of species of Hepatozoon in a free-ranging AWD population. In a general health survey of AWDs in the Kruger National Park, blood specimens (n = 74) collected from 54 individuals were examined for the presence of Hepatozoon spp. At first sampling, specimens from 42 of 54 individuals (77.7%) were positive, based on the primer set HepF300 and HepR900. Twenty individuals were resampled between 51 and 69 days after first sampling; one of these was resampled twice. Samples from six individuals that had tested negative previously now reacted positive. Assuming that all 54 individuals were still alive, the prevalence had therefore increased to 48 individuals infected, or 88.8%. Resultant 18S rDNA sequences isolated from these specimens share high similarity to other Hepatozoon canis genotypes. Phylogenetic analysis recovered the Hepatozoon sp. isolated from AWDs within the H. canis cluster, which includes species of Hepatozoon from other canid and tick hosts.

6.
Vet Parasitol ; 291: 109381, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33667987

RESUMO

In sub-Saharan Africa, babesiosis in domestic dogs is caused primarily by Babesia rossi. Black-backed jackals (Canis mesomelas), which are subclinical carriers of B. rossi, were a likely reservoir host from which infection passed to domestic dogs. The role of other indigenous canids, e.g. African wild dogs (Lycaon pictus), as reservoirs of B. rossi has not been elucidated. The question also arises whether genetic differences have arisen between B. rossi infecting domestic dogs and "ancestral" B. rossi in jackals. In a previous study we found that nearly one-third (27 of 91) of jackals were infected with B. rossi; this was confirmed by 18S rDNA sequence analysis. In this study, the near full-length B. rossi 18S rRNA gene was successfully amplified from 6 domestic dogs and 3 black-backed jackals. The obtained recombinant sequences were identical (100 %) to previously described B. rossi sequences of black-backed jackals in South Africa, and 99 % similar to B. rossi from dogs in South Africa and the Sudan. Although blood specimens from 5 (10 %) of 52 free-ranging African wild dogs (from Kruger National Park, South Africa, reacted with the B. rossi probe on RLB hybridisation, the presence of B. rossi could not be confirmed by amplification and sequencing, nor by multiplex, real-time PCR. Although African wild dogs they can be infected with B. rossi without showing clinical signs, our findings suggest that they are apparently not important reservoir hosts of B. rossi.


Assuntos
Babesiose/epidemiologia , Canidae/parasitologia , Especificidade de Hospedeiro , Animais , Babesia/genética , Babesiose/parasitologia , Doenças do Cão/parasitologia , Cães , Chacais/parasitologia , Reação em Cadeia da Polimerase , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...