Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 106(5-6): 2219-2233, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35171338

RESUMO

Heat haze-forming proteins are stable during winemaking and are typically removed via adsorption to bentonite. Proteolytic degradation is an alternative method to prevent wine-haze and offers the opportunity to reduce the environmental impacts and labor cost of the process. Herein, we describe the development of a production system for Botrytis cinerea proteases for the enzymatic degradation of heat haze-forming proteins. The effect of culture medium on the secretion of glucan by B. cinerea was investigated and methods to inactivate B. cinerea laccase in liquid culture medium were assessed. Protease production by B. cinerea was scaled up from 50 mL in shake flasks to 1 L in bioreactors, resulting in an increase in protease yield from 0.30 to 3.04 g L-1. Glucan secretion by B. cinerea was minimal in culture medium containing lactose as a carbon source and either lactic or sulfuric acid for pH control. B. cinerea laccases were inactivated by reducing the pH of culture supernatant to 1.5 for 1 h. B. cinerea proteases were concentrated and partially purified using ammonium sulfate precipitation. SWATH-MS identified aspartic acid protease BcAP8 amongst the precipitated proteins. These results demonstrate a simple, affordable, and scalable process to produce proteases from B. cinerea as a replacement for bentonite in winemaking. KEY POINTS: • Isolates of B. cinerea that produce proteases with potential for reducing wine heat-haze forming proteins were identified. • Media and fermentation optimization increased protease yield tenfold and reduced glucan secretion. • Low pH treatment inactivated laccases but not proteases.


Assuntos
Vinho , Botrytis , Peptídeo Hidrolases/metabolismo , Vinho/análise
2.
Proteomics ; 14(21-22): 2523-34, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25266764

RESUMO

Giardia duodenalis is a protozoan parasite of the small intestine in vertebrates, including humans. Assemblage A of G. duodenalis is one of the two discrete subtypes that infects humans, and is considered a zoonotic assemblage. Two G. duodenalis Assemblage A strains BRIS/95/HEPU/2041 and BRIS/83/HEPU/106, constituting virulent and control strains respectively, were analyzed in one of the first comparative shotgun proteomic studies performed in this parasite. Protein extracts were prepared using a multiplatform approach with both an in-gel and in-solution sample preparation to enable us to assess the complementarity for future Giardia proteomic studies. Protein analysis revealed that BRIS/95/HEPU/2041 possessed a wider and more varied repertoire of variant surface proteins (VSPs), which are hypothesized to be involved in host adaptation, immune evasion, and virulence. A total of 35 VSPs were identified, with three common to both strains, six unique to BRIS/82/HEPU/106, and twenty-six unique to BRIS/95/HEPU/2041. Additionally, up to 25.6% of all differentially expressed proteins in BRIS/95/HEPU/2041 belonged to the VSP family, a trend not seen in the control BRIS/83/HEPU/106. Greater antigen variation in BRIS/95/HEPU/2041 may explain aspects of virulence phenotypes in G. duodenalis, with a highly diverse population capable of evading host immune responses.


Assuntos
Variação Antigênica , Giardia lamblia/patogenicidade , Giardíase/parasitologia , Proteínas de Protozoários/análise , Animais , Giardia lamblia/imunologia , Humanos , Proteômica , Proteínas de Protozoários/imunologia , Espectrometria de Massas em Tandem
3.
BMC Plant Biol ; 13: 49, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23514573

RESUMO

BACKGROUND: Cabernet Sauvignon grapevines were exposed to a progressive, increasing water defict over 16 days. Shoot elongation and photosynthesis were measured for physiological responses to water deficit. The effect of water deficit over time on the abundance of individual proteins in growing shoot tips (including four immature leaves) was analyzed using nanoflow liquid chromatography - tandem mass spectrometry (nanoLC-MS/MS). RESULTS: Water deficit progressively decreased shoot elongation, stomatal conductance and photosynthesis after Day 4; 2277 proteins were identified by shotgun proteomics with an average CV of 9% for the protein abundance of all proteins. There were 472 out of 942 (50%) proteins found in all samples that were significantly affected by water deficit. The 472 proteins were clustered into four groups: increased and decreased abundance of early- and late-responding protein profiles. Vines sensed the water deficit early, appearing to acclimate to stress, because the abundance of many proteins changed before decreases in shoot elongation, stomatal conductance and photosynthesis. Predominant functional categories of the early-responding proteins included photosynthesis, glycolysis, translation, antioxidant defense and growth-related categories (steroid metabolism and water transport), whereas additional proteins for late-responding proteins were largely involved with transport, photorespiration, antioxidants, amino acid and carbohydrate metabolism. CONCLUSIONS: Proteomic responses to water deficit were dynamic with early, significant changes in abundance of proteins involved in translation, energy, antioxidant defense and steroid metabolism. The abundance of these proteins changed prior to any detectable decreases in shoot elongation, stomatal conductance or photosynthesis. Many of these early-responding proteins are known to be regulated by post-transcriptional modifications such as phosphorylation. The proteomics analysis indicates massive and substantial changes in plant metabolism that appear to funnel carbon and energy into antioxidant defenses in the very early stages of plant response to water deficit before any significant injury.


Assuntos
Fotossíntese/fisiologia , Proteômica/métodos , Vitis/metabolismo , Água/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA