Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(1): e1011034, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38198533

RESUMO

Most deleterious variants are recessive and segregate at relatively low frequency. Therefore, high sample sizes are required to identify these variants. In this study we report a large-scale sequence based genome-wide association study (GWAS) in pigs, with a total of 120,000 Large White and 80,000 Synthetic breed animals imputed to sequence using a reference population of approximately 1,100 whole genome sequenced pigs. We imputed over 20 million variants with high accuracies (R2>0.9) even for low frequency variants (1-5% minor allele frequency). This sequence-based analysis revealed a total of 14 additive and 9 non-additive significant quantitative trait loci (QTLs) for growth rate and backfat thickness. With the non-additive (recessive) model, we identified a deleterious missense SNP in the CDHR2 gene reducing growth rate and backfat in homozygous Large White animals. For the Synthetic breed, we revealed a QTL on chromosome 15 with a frameshift variant in the OBSL1 gene. This QTL has a major impact on both growth rate and backfat, resembling human 3M-syndrome 2 which is related to the same gene. With the additive model, we confirmed known QTLs on chromosomes 1 and 5 for both breeds, including variants in the MC4R and CCND2 genes. On chromosome 1, we disentangled a complex QTL region with multiple variants affecting both traits, harboring 4 independent QTLs in the span of 5 Mb. Together we present a large scale sequence-based association study that provides a key resource to scan for novel variants at high resolution for breeding and to further reduce the frequency of deleterious alleles at an early stage in the breeding program.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Animais , Suínos/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Fenótipo , Frequência do Gene , Genótipo , Proteínas do Citoesqueleto/genética
2.
Acta Vet Scand ; 64(1): 21, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064611

RESUMO

Hyperactive sperm motility is important for successful fertilization. In the present study, a proteome profiling approach was performed to identify the differences between Landrace boars with different levels of hyperactive sperm motility in liquid extended semen. Two contrasts were studied: (i) high versus low levels of sperm hyperactivity at semen collection day and (ii) high versus low change in levels of sperm hyperactivity after 96 h semen storage. Testicular samples were analyzed on a Q Exactive mass spectrometer and more than 6000 proteins were identified in the 13 samples. The most significant differentially expressed proteins were mediator complex subunit 28 (MED28), cell division cycle 37 like 1 (CDC37L1), ubiquitin specific peptidase 10 (USP10), zinc finger FYVE-type containing 26 (ZFYVE26), protein kinase C delta (PRKCD), actinin alpha 4 (ACTN4), N(alpha)-acetyltransferase 30 (NAA30), C1q domain-containing (LOC110258309) and uncharacterized LOC100512926. Of the differentially expressed proteins, 11 have previously been identified as differentially expressed at the corresponding mRNA transcript level using the same samples and contrasts. These include sphingosine kinase 1 isoform 2 (SPHK1), serine and arginine rich splicing factor 1 (SRSF1), and tubulin gamma-1 (TUBG1) which are involved in the acrosome reaction and sperm motility. A mass spectrometry approach was applied to investigate the protein profiles of boars with different levels of hyperactive sperm motility. This study identified several proteins previously shown to be involved in sperm motility and quality, but also proteins with no known function for sperm motility. Candidates that are differentially expressed on both mRNA and protein levels are especially relevant as biological markers of semen quality.


Assuntos
Análise do Sêmen , Motilidade dos Espermatozoides , Animais , Masculino , RNA Mensageiro , Sêmen/fisiologia , Análise do Sêmen/veterinária , Espermatozoides/fisiologia , Suínos
3.
Front Genet ; 13: 871516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692822

RESUMO

Backfat is an important trait in pork production, and it has been included in the breeding objectives of genetic companies for decades. Although adipose tissue is a good energy storage, excessive fat results in reduced efficiency and economical losses. A large QTL for backfat thickness on chromosome 5 is still segregating in different commercial pig breeds. We fine mapped this QTL region using a genome-wide association analysis (GWAS) with 133,358 genotyped animals from five commercial populations (Landrace, Pietrain, Large White, Synthetic, and Duroc) imputed to the porcine 660K SNP chip. The lead SNP was located at 5:66103958 (G/A) within the third intron of the CCND2 gene, with the G allele associated with more backfat, while the A allele is associated with less backfat. We further phased the QTL region to discover a core haplotype of five SNPs associated with low backfat across three breeds. Linkage disequilibrium analysis using whole-genome sequence data revealed three candidate causal variants within intronic regions and downstream of the CCND2 gene, including the lead SNP. We evaluated the association of the lead SNP with the expression of the genes in the QTL region (including CCND2) in a large cohort of 100 crossbred samples, sequenced in four different tissues (lung, spleen, liver, muscle). Results show that the A allele increases the expression of CCND2 in an additive way in three out of four tissues. Our findings indicate that the causal variant for this QTL region is a regulatory variant within the third intron of the CCND2 gene affecting the expression of CCND2.

5.
Animals (Basel) ; 10(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998259

RESUMO

Surgical castration of piglets without pain relief is still common practice in many countries. Possible alternatives for surgical castration are application of pain relief or anaesthesia or production of boars (entire males) and immunocastrates. Each of these alternatives faces advantages and disadvantages which may result in different citizen attitudes and consumers acceptability. Understanding which practice is acceptable to whom and why may further stimulate implementation. Consumer (n = 3251) and stakeholder (n = 1027) attitudes towards surgical castration without pain relief, surgical castration with anaesthesia, immunocastration, and production of boars were surveyed from April to June 2020 via an online questionnaire in 16 countries (>175 respondents per country). Surgical castration without pain relief was separated from each of the alternatives due to animal welfare and showed the lowest acceptability (32%). Within the alternatives, a further partitioning between the alternatives was based on perceived quality and food safety, with an acceptance of 85% for applying anaesthesia, 71% for immunocastration, and 49% for boar production. Differences depending on professional involvement and familiarity with agriculture could be observed, mainly for the acceptance of surgical castration without anaesthesia, immunocastration, and boars. Castration with anaesthesia was highly accepted by all types of respondents.

6.
BMC Vet Res ; 16(1): 161, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32456687

RESUMO

BACKGROUND: Sperm hyperactive motility has previously been shown to influence litter size in pigs, but little is known about the underlying biological mechanisms. The aim of this study was to use RNA sequencing to investigate gene expression differences in testis tissue from Landrace and Duroc boars with high and low levels of sperm hyperactive motility. Boars with divergent phenotypes were selected based on their sperm hyperactivity values at the day of ejaculation (day 0) (contrasts (i) and (ii) for Landrace and Duroc, respectively) and on their change in hyperactivity between day 0 and after 96 h liquid storage at 18 °C (contrast (iii)). RESULTS: RNA sequencing was used to measure gene expression in testis. In Landrace boars, 3219 genes were differentially expressed for contrast (i), whereas 102 genes were differentially expressed for contrast (iii). Forty-one differentially expressed genes were identified in both contrasts, suggesting a functional role of these genes in hyperactivity regardless of storage. Zinc finger DNLZ was the most up-regulated gene in contrasts (i) and (iii), whereas the most significant differentially expressed gene for the two contrasts were ADP ribosylation factor ARFGAP1 and solute carrier SLC40A1, respectively. For Duroc (contrast (ii)), the clustering of boars based on their gene expression data did not reflect their difference in sperm hyperactivity phenotypes. No results were therefore obtained for this breed. A case-control analysis of variants identified in the Landrace RNA sequencing data showed that SNPs in NEU3, CHRDL2 and HMCN1 might be important for sperm hyperactivity. CONCLUSIONS: Differentially expressed genes were identified in Landrace boars with high and low levels of sperm hyperactivity at the day of ejaculate collection and high and low change in hyperactivity after 96 h of sperm storage. The results point towards important candidate genes, biochemical pathways and sequence variants underlying sperm hyperactivity in pigs.


Assuntos
Motilidade dos Espermatozoides/genética , Sus scrofa/genética , Testículo/metabolismo , Animais , Perfilação da Expressão Gênica/veterinária , Masculino , Polimorfismo de Nucleotídeo Único , Análise do Sêmen/veterinária , Análise de Sequência de RNA/veterinária , Sus scrofa/classificação
7.
Acta Vet Scand ; 61(1): 58, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796051

RESUMO

Finding effective predictors of traits related to boar fertility is essential for increasing the efficiency of artificial insemination systems in pig breeding. The objective of this study was to find associations between single-nucleotide polymorphisms (SNPs) within candidate genes and fertility in the breeds Landrace and Duroc. Animals with breeding values for total number of piglets born, were re-sequenced for exonic regions of 14 candidate genes related to male and female fertility using samples from 16 Landrace boars and 16 Duroc boars (four with high and four with low breeding value of total number of piglets born for each breed for male fertility, and the same for female fertility) to detect genetic variants. Genotyping for the detected SNPs was done in 619 Landrace boars and 513 Duroc boars. Two SNPs in BMPR1 and one SNP in COX-2 were found significantly associated with the total number of piglets born in Landrace. In Duroc, two SNPs in PLCz, one SNP in VWF and one SNP in ZP3 were found significantly associated with total number of piglets born. These SNPs explained between 0.27% and 1.18% of the genetic variance. These effects are too low for being used directly for selection purposes but can be of interest in SNP-panels used for genomic selection.


Assuntos
Fertilidade/genética , Polimorfismo de Nucleotídeo Único/fisiologia , Sus scrofa/fisiologia , Animais , Feminino , Masculino , Especificidade da Espécie , Sus scrofa/genética
8.
Front Genet ; 10: 272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972109

RESUMO

Modern breeding schemes for livestock species accumulate a large amount of genotype and phenotype data which can be used for genome-wide association studies (GWAS). Many chromosomal regions harboring effects on quantitative traits have been reported from these studies, but the underlying causative mutations remain mostly undetected. In this study, we combine large genotype and phenotype data available from a commercial pig breeding scheme for three different breeds (Duroc, Landrace, and Large White) to pinpoint functional variation for a region on porcine chromosome 7 affecting number of teats (NTE). Our results show that refining trait definition by counting number of vertebrae (NVE) and ribs (RIB) helps to reduce noise from other genetic variation and increases heritability from 0.28 up to 0.62 NVE and 0.78 RIB in Duroc. However, in Landrace, the effect of the same QTL on NTE mainly affects NVE and not RIB, which is reflected in reduced heritability for RIB (0.24) compared to NVE (0.59). Further, differences in allele frequencies and accuracy of rib counting influence genetic parameters. Correction for the top SNP does not detect any other QTL effect on NTE, NVE, or RIB in Landrace or Duroc. At the molecular level, haplotypes derived from 660K SNP data detects a core haplotype of seven SNPs in Duroc. Sequence analysis of 16 Duroc animals shows that two functional mutations of the Vertnin (VRTN) gene known to increase number of thoracic vertebrae (ribs) reside on this haplotype. In Landrace, the linkage disequilibrium (LD) extends over a region of more than 3 Mb also containing both VRTN mutations. Here, other modifying loci are expected to cause the breed-specific effect. Additional variants found on the wildtype haplotype surrounding the VRTN region in all sequenced Landrace animals point toward breed specific differences which are expected to be present also across the whole genome. This Landrace specific haplotype contains two missense mutations in the ABCD4 gene, one of which is expected to have a negative effect on the protein function. Together, the integration of largescale genotype, phenotype and sequence data shows exemplarily how population parameters are influenced by underlying variation at the molecular level.

9.
PLoS Genet ; 15(3): e1008055, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30875370

RESUMO

Lethal recessive alleles cause pre- or postnatal death in homozygous affected individuals, reducing fertility. Especially in small size domestic and wild populations, those alleles might be exposed by inbreeding, caused by matings between related parents that inherited the same recessive lethal allele from a common ancestor. In this study we report five relatively common (up to 13.4% carrier frequency) recessive lethal haplotypes in two commercial pig populations. The lethal haplotypes have a large effect on carrier-by-carrier matings, decreasing litter sizes by 15.1 to 21.6%. The causal mutations are of different type including two splice-site variants (affecting POLR1B and TADA2A genes), one frameshift (URB1), and one missense (PNKP) variant, resulting in a complete loss-of-function of these essential genes. The recessive lethal alleles affect up to 2.9% of the litters within a single population and are responsible for the death of 0.52% of the total population of embryos. Moreover, we provide compelling evidence that the identified embryonic lethal alleles contribute to the observed heterosis effect for fertility (i.e. larger litters in crossbred offspring). Together, this work marks specific recessive lethal variation describing its functional consequences at the molecular, phenotypic, and population level, providing a unique model to better understand fertility and heterosis in livestock.


Assuntos
Genes Letais , Mutação com Perda de Função , Sus scrofa/embriologia , Sus scrofa/genética , Sequência de Aminoácidos , Animais , Feminino , Fertilidade/genética , Genes Recessivos , Deriva Genética , Genética Populacional , Haplótipos , Vigor Híbrido/genética , Hibridização Genética/genética , Tamanho da Ninhada de Vivíparos/genética , Masculino , Gravidez , RNA Polimerase I/genética , Análise de Sequência de RNA , Sequenciamento Completo do Genoma
10.
Reprod Domest Anim ; 54(2): 160-166, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30168871

RESUMO

The sperm chromatin structure assay is a method for assessment of sperm DNA fragmentation, a parameter reported to be negatively related to field fertility in several mammal species. This method calculates a DNA fragmentation index (DFI) whose high values indicate abnormal chromatin structure. In this study, running from March 2010 until June 2017, the aim was to assess sperm DFI in stored liquid extended semen from two different pig breeds, Norwegian Landrace (NL; n = 693) and Norwegian Duroc (ND; n = 655), and to evaluate the influence on total number of piglets born (TNB). There was a significantly higher median DFI (p < 0.0001) in ejaculates from the 478 ND boars compared to the 452 NL boars. Data from 19,496 NL litters and 3,877 ND litters of the same boars were retrieved. For either breed, sow herd (p < 0.0001), parity (p < 0.05) and DFI (p < 0.05) showed significant effects on TNB. The DFI was negatively correlated to TNB in both breeds. The boars with the 5% lowest TNB had a least square means DFI of 3.05% and 2.24% in NL and ND, respectively, compared to 1.67% and 1.23% for the boars with the 5% highest TNB (p < 0.01). The DFI and the motility of the same semen samples were negatively correlated (p < 0.0001), and the high and low TNB groups showed significant differences in motility. However, this difference could not be used for practical prediction of TNB group (92.1% vs. 89.7%; p = 0.0038 and 92.3% vs. 89.5%; p = 0.018; NL and ND, respectively). In conclusion, our results indicate that sperm DNA integrity in semen with good motility and morphology may be an additional prediction parameter for fertility in pigs.


Assuntos
Cromatina/química , Fragmentação do DNA/efeitos dos fármacos , Fertilidade , Análise do Sêmen/veterinária , Espermatozoides/fisiologia , Laranja de Acridina , Animais , Cruzamento , Cromatina/efeitos dos fármacos , Feminino , Citometria de Fluxo , Tamanho da Ninhada de Vivíparos , Masculino , Paridade , Gravidez , Preservação do Sêmen/veterinária , Espermatozoides/efeitos dos fármacos , Suínos
11.
BMC Genomics ; 19(1): 412, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843603

RESUMO

BACKGROUND: Umbilical hernia is one of the most prevalent congenital defect in pigs, causing economic losses and substantial animal welfare problems. Identification and implementation of genomic regions controlling umbilical hernia in breeding is of great interest to reduce incidences of hernia in commercial pig production. The aim of this study was to identify such regions and possibly identify causative variation affecting umbilical hernia in pigs. A case/control material consisting of 739 Norwegian Landrace pigs was collected and applied in a GWAS study with a genome-wide distributed panel of 60 K SNPs. Additionally candidate genes were sequenced to detect additional polymorphisms that were used for single SNP and haplotype association analyses in 453 of the pigs. RESULTS: The GWAS in this report detected a highly significant region affecting umbilical hernia around 50 Mb on SSC14 (P < 0.0001) explaining up to 8.6% of the phenotypic variance of the trait. The region is rather broad and includes 62 significant SNPs in high linkage disequilibrium with each other. Targeted sequencing of candidate genes within the region revealed polymorphisms within the Leukemia inhibitory factor (LIF) and Oncostatin M (OSM) that were significantly associated with umbilical hernia (P < 0.001). CONCLUSIONS: A highly significant QTL for umbilical hernia in Norwegian Landrace pigs was detected around 50 Mb on SSC14. Resequencing of candidate genes within the region revealed SNPs within LIF and OSM highly associated with the trait. However, because of extended LD within the region, studies in other populations and functional studies are needed to determine whether these variants are causal or not. Still without this knowledge, SNPs within the region can be used as genetic markers to reduce incidences of umbilical hernia in Norwegian Landrace pigs.


Assuntos
Estudo de Associação Genômica Ampla , Hérnia Umbilical/genética , Locos de Características Quantitativas/genética , Animais , Haplótipos , Polimorfismo de Nucleotídeo Único , Suínos
12.
Anim Reprod Sci ; 193: 226-234, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29703418

RESUMO

Boar fertility has a major impact on overall pig reproductive efficiency. Using accurate and objective in vitro sperm variables for predicting in vivo fertility from a single ejaculate, however, is challenging. Motility is the most widely used indicator of sperm quality, and a computer assisted sperm analysis (CASA) system is now available for objective assessment of sperm motility characteristics. In this study sperm motility characteristics and semen ATP concentrations were investigated and the effect of both were evaluated on total number of piglets born (TNB) when Norwegian Landrace (NL) and Norwegian Duroc (ND) boar semen was used for AI. In addition, breed differences for semen storage capacity were investigated. The results from CASA analysis indicated there were differences between NL and ND sperm motility variables. The percentage of motile sperm cells decreased in both NL (P = 0.01) and ND (P < 0.0001) during storage. A large proportion of sperm cells with a hyperactive motility pattern were detected in ND semen on the day of collection, with no significant changes as a result of storage. Inconsistent with this finding, there was greater degree of hyper-activation in sperm motility pattern for NL because of semen storage. There was a significant decrease in semen ATP concentration during storage (P < 0.0001) in both breeds. The linearity of sperm movement at the day of collection and the wobble after storage influenced TNB in NL, while the percentage of motile cells, curvilinear velocity and lateral head amplitude on the day of semen collection and linearity after storage influenced TNB in ND.


Assuntos
Trifosfato de Adenosina/metabolismo , Fertilidade/fisiologia , Reprodução/fisiologia , Motilidade dos Espermatozoides/fisiologia , Suínos/fisiologia , Animais , Cruzamento , Masculino , Análise do Sêmen , Especificidade da Espécie , Suínos/classificação
13.
BMC Vet Res ; 13(1): 362, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29183316

RESUMO

BACKGROUND: Sperm DNA is protected against fragmentation by a high degree of chromatin packaging. It has been demonstrated that proper chromatin packaging is important for boar fertility outcome. However, little is known about the molecular mechanisms underlying differences in sperm DNA fragmentation. Knowledge of sequence variation influencing this sperm parameter could be beneficial in selecting the best artificial insemination (AI) boars for commercial production. The aim of this study was to identify genes differentially expressed in testis tissue of Norwegian Landrace and Duroc boars, with high and low sperm DNA fragmentation index (DFI), using transcriptome sequencing. RESULTS: Altogether, 308 and 374 genes were found to display significant differences in expression level between high and low DFI in Landrace and Duroc boars, respectively. Of these genes, 71 were differentially expressed in both breeds. Gene ontology analysis revealed that significant terms in common for the two breeds included extracellular matrix, extracellular region and calcium ion binding. Moreover, different metabolic processes were enriched in Landrace and Duroc, whereas immune response terms were common in Landrace only. Variant detection identified putative polymorphisms in some of the differentially expressed genes. Validation showed that predicted high impact variants in RAMP2, GIMAP6 and three uncharacterized genes are particularly interesting for sperm DNA fragmentation in boars. CONCLUSIONS: We identified differentially expressed genes between groups of boars with high and low sperm DFI, and functional annotation of these genes point towards important biochemical pathways. Moreover, variant detection identified putative polymorphisms in the differentially expressed genes. Our results provide valuable insights into the molecular network underlying DFI in pigs.


Assuntos
Fragmentação do DNA , Perfilação da Expressão Gênica , Espermatozoides/citologia , Sus scrofa/genética , Animais , Cruzamento , Masculino , Polimorfismo Genético , Análise de Sequência de RNA/veterinária , Sus scrofa/metabolismo , Testículo/citologia , Testículo/metabolismo , Transcriptoma
14.
BMC Genet ; 18(1): 85, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29020941

RESUMO

BACKGROUND: Previous studies in the Norwegian pig breeds Landrace and Duroc have revealed a QTL for levels of skatole located in the region 74.7-80.5 Mb on SSC7. Skatole is one of the main components causing boar taint, which gives an undesirable smell and taste to the pig meat when heated. Surgical castration of boars is a common practice to reduce the risk of boar taint, however, a selection for boars genetically predisposed for low levels of taint would help eliminating the need for castration and be advantageous for both economic and welfare reasons. In order to identify the causal mutation(s) for the QTL and/or identify genetic markers for selection purposes we performed a fine mapping of the SSC7 skatole QTL region. RESULTS: A dense set of markers on SSC7 was obtained by whole genome re-sequencing of 24 Norwegian Landrace and 23 Duroc boars. Subsets of 126 and 157 SNPs were used for association analyses in Landrace and Duroc, respectively. Significant single markers associated with skatole spanned a large 4.4 Mb region from 75.9-80.3 Mb in Landrace, with the highest test scores found in a region between the genes NOVA1 and TGM1 (p < 0.001). The same QTL was obtained in Duroc and, although less significant, with associated SNPs spanning a 1.2 Mb region from 78.9-80.1 Mb (p < 0.01). The highest test scores in Duroc were found in genes of the granzyme family (GZMB and GZMH-like) and STXBP6. Haplotypes associated with levels of skatole were identified in Landrace but not in Duroc, and a haplotype block was found to explain 2.3% of the phenotypic variation for skatole. The SNPs in this region were not associated with levels of sex steroids. CONCLUSIONS: Fine mapping of a QTL for skatole on SSC7 confirmed associations of this region with skatole levels in pigs. The QTL region was narrowed down to 4.4 Mb in Landrace and haplotypes explaining 2.3% of the phenotypic variance for skatole levels were identified. Results confirmed that sex steroids are not affected by this QTL region, making these markers attractive for selection against boar taint.


Assuntos
Biomarcadores , Mapeamento Cromossômico/métodos , Cromossomos , Locos de Características Quantitativas , Escatol/análise , Suínos/genética , Sequenciamento Completo do Genoma/métodos , Animais , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
15.
BMC Genomics ; 18(1): 369, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28494783

RESUMO

BACKGROUND: Fatty acid composition contributes importantly to meat quality and is essential to the nutritional value of the meat. Identification of genetic factors underlying levels of fatty acids can be used to breed for pigs with healthier meat. The aim of this study was to conduct genome-wide association studies (GWAS) to identify QTL regions affecting fatty acid composition in backfat from the pig breeds Duroc and Landrace. RESULTS: Using data from the Axiom porcine 660 K array, we performed GWAS on 454 Duroc and 659 Landrace boars for fatty acid phenotypes measured by near-infrared spectroscopy (NIRS) technology (C16:0, C16:1n-7, C18:0, C18:1n-9, C18:2n-6, C18:3n-3, total saturated fatty acids, monounsaturated fatty acids and polyunsaturated fatty acids). Two QTL regions on SSC4 and SSC14 were identified in Duroc for the de novo synthesized fatty acids traits, whereas one QTL on SSC8 was detected in Landrace for C16:1n-7. The QTL region on SSC14 has been reported in previous studies and a putative causative mutation has been suggested in the promoter region of the SCD gene. Whole genome re-sequencing data was used for genotype imputation and to fine map the SSC14 QTL region in Norwegian Duroc. This effort confirms the location of the QTL on this chromosome as well as suggesting other putative candidate genes in the region. The most significant single nucleotide polymorphisms (SNPs) located on SSC14 explain between 55 and 76% of the genetic variance and between 27 and 54% of the phenotypic variance for the de novo synthesized fatty acid traits in Norwegian Duroc. For the QTL region on SSC8 in Landrace, the most significant SNP explained 19% of the genetic variance and 5% of the phenotypic variance for C16:1n-7. CONCLUSIONS: This study confirms a major QTL affecting fatty acid composition on SSC14 in Duroc, which can be used in genetic selection to increase the level of fatty acid desaturation. The SSC14 QTL was not segregating in the Landrace population, but another QTL on SSC8 affecting C16:1n-7 was identified and might be used to increase the level of desaturation in meat products from this breed.


Assuntos
Ácidos Graxos/química , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Suínos/genética , Animais , Dorso , Suínos/metabolismo
16.
Anim Genet ; 46(4): 395-402, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25996251

RESUMO

We herein describe the realization of a genome-wide association study for scrotal hernia and cryptorchidism in Norwegian and Belgian commercial pig populations. We have used the transmission disequilibrium test to avoid spurious associations due to population stratification. By doing so, we obtained genome-wide significant signals for both diseases with SNPs located in the pseudo-autosomal region in the vicinity of the pseudo-autosomal boundary. By further analyzing these signals, we demonstrate that the observed transmission disequilibria are artifactual. We determine that transmission bias at pseudo-autosomal markers will occur (i) when analyzing traits with sex-limited expression and (ii) when the allelic frequencies at the marker locus differ between X and Y chromosomes. We show that the bias is due to the fact that (i) sires will preferentially transmit the allele enriched on the Y (respectively X) chromosome to affected sons (respectively daughters) and (ii) dams will appear to preferentially transmit the allele enriched on the Y (respectively X) to affected sons (respectively daughters), as offspring inheriting the other allele are more likely to be non-informative. We define the conditions to mitigate these issues, namely by (i) extracting information from maternal meiosis only and (ii) ignoring trios for which sire and dam have the same heterozygous genotype. We show that by applying these rules to scrotal hernia and cryptorchidism, the pseudo-autosomal signals disappear, confirming their spurious nature.


Assuntos
Estudos de Associação Genética , Desequilíbrio de Ligação , Suínos/genética , Animais , Cruzamento , Criptorquidismo/genética , Criptorquidismo/veterinária , Feminino , Frequência do Gene , Marcadores Genéticos , Genótipo , Haplótipos , Hérnia/genética , Hérnia/veterinária , Heterozigoto , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Escroto/patologia , Cromossomo X , Cromossomo Y
17.
BMC Genomics ; 12: 362, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21752240

RESUMO

BACKGROUND: Boar taint is observed in a high proportion of uncastrated male pigs and is characterized by an unpleasant odor/flavor in cooked meat, primarily caused by elevated levels of androstenone and skatole. Androstenone is a steroid produced in the testis in parallel with biosynthesis of other sex steroids like testosterone and estrogens. This represents a challenge when performing selection against androstenone in breeding programs, without simultaneously decreasing levels of other steroids. The aim of this study was to use high-density genome wide association (GWA) in combination with linkage disequilibrium-linkage analysis (LDLA) to identify quantitative trait loci (QTL) associated with boar taint compounds and related sex steroids in commercial Landrace (n = 1,251) and Duroc (n = 918) breeds. RESULTS: Altogether, 14 genome wide significant (GWS) QTL regions for androstenone in subcutaneous fat were obtained from the LDLA study in Landrace and 14 GWS QTL regions in Duroc. LDLA analysis revealed that 7 of these QTL regions, located on SSC 1, 2, 3, 7 and 15, were obtained in both breeds. All 14 GWS androstenone QTLs in Landrace are also affecting the estrogens at chromosome wise significance (CWS) or GWS levels, while in Duroc, 3 of the 14 QTLs affect androstenone without affecting any of the estrogens. For skatole, 10 and 4 QTLs were GWS in the LDLA analysis for Landrace and Duroc respectively, with 4 of these detected in both breeds. The GWS QTLs for skatole obtained by LDLA are located at SSC 1, 5, 6, 7, 10, 11, 13 and 14. CONCLUSION: This is the first report applying the Porcine 60 K SNP array for simultaneous analysis of boar taint compounds and related sex hormones, using both GWA and LDLA approaches. Several QTLs are involved in regulation of androstenone and skatole, and most of the QTLs for androstenone are also affecting the levels of estrogens. Seven QTLs for androstenone were detected in one breed and confirmed in the other, i.e. in an independent sample, although the majority of QTLs are breed specific. Most QTLs for skatole do not negatively affect other sex hormones and should be easier to implement into the breeding scheme.


Assuntos
Ligação Genética , Estudo de Associação Genômica Ampla , Hormônios Esteroides Gonadais/genética , Desequilíbrio de Ligação , Locos de Características Quantitativas , Suínos/genética , Androstenos/metabolismo , Animais , Cruzamento , Genoma , Masculino , Carne/normas , Polimorfismo de Nucleotídeo Único , Escatol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...