Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gend Med ; 9(3): 166-179.e13, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22361840

RESUMO

BACKGROUND: Nutritional conditions during fetal life influence the risk of the development of metabolic syndrome and cardiovascular diseases in adult life (metabolic programming). Impaired glucose tolerance and dysregulated fatty acid metabolism are hallmarks of metabolic syndrome. OBJECTIVE: We aimed to establish a mouse model of metabolic programming focusing on the sex-specific effects of a maternal low-protein diet during gestation on glucose and lipid metabolism in the adult offspring. METHODS: Pregnant C57BL/6 mice received a control or a low-protein diet (18% vs 9% casein) throughout gestation. Male and female offspring received a low-fat or a high-fat diet from 6 to 22 weeks of age. RESULTS: Maternal low-protein diet during gestation led to deteriorated insulin sensitivity on high-fat feeding in female offspring, as determined by biochemical and microarray analyses. Female offspring of control diet-fed dams were relatively resistant to high-fat diet-induced metabolic dysregulation. In contrast, maternal low-protein diet did not specifically affect the metabolic parameters addressed in male offspring. In males, the high-fat diet led to insulin insensitivity regardless of the diet of the dam. CONCLUSIONS: Our findings show that fetal malnutrition has a limited impact on male mouse offspring, yet it does influence the metabolic response to a high-fat diet in females. These findings may have implications for future early diagnostics in metabolic syndrome and for the development of sex-specific treatment regimens.


Assuntos
Dieta com Restrição de Proteínas/efeitos adversos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Síndrome Metabólica/etiologia , Efeitos Tardios da Exposição Pré-Natal , Fenômenos Fisiológicos da Nutrição Pré-Natal , Adulto , Animais , Dieta Hiperlipídica , Feminino , Humanos , Masculino , Camundongos , Gravidez , Fatores Sexuais
2.
Eur J Cancer ; 47(10): 1595-602, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21429739

RESUMO

PURPOSE: A feasibility study was performed to investigate the presence of VEGF in melanoma lesions by VEGF-SPECT with (111)In-bevacizumab. In addition the effect of a single therapeutic bevacizumab dose on (111)In-bevacizumab uptake was compared with VEGF levels in resected melanoma lesions. PATIENTS AND METHODS: Eligible were patients with stage III/IV melanoma who presented with nodal recurrent disease. VEGF-SPECT was performed after administration of 100 Mbq (111)In-bevacizumab (8 mg) at days 0, 2, 4 and 7 post injection. Tumour visualisation and quantification were compared with CT and FDG-PET. On day 7 a single dose of 7.5mg/kg bevacizumab was administered intravenously. On day 21, a second tracer dose (111)In-bevacizumab was administered and scans were obtained on days 21, 25 and 28. Metastases were surgically resected within 2 weeks after the last VEGF-SPECT scan and immunohistological (IHC) VEGF tumour expression was compared with (111)In-bevacizumab tumour uptake. RESULTS: Nine patients were included. FDG-PET and CT detected both in total 12 nodal lesions which were all visualised by VEGF-SPECT. At baseline, (111)In-bevacizumab tumour uptake varied 3-fold between and 1.6 ± 0.1-fold within patients. After a therapeutic dose of bevacizumab there was a 21 ± 4% reduction in (111)In-bevacizumab uptake. The (111)In-bevacizumab tumour uptake in the second series positively correlated with the VEGF-A expression in the resected tumour lesions. CONCLUSION: VEGF-SPECT could visualise all known melanoma lesions. A single dose of bevacizumab slightly lowered (111)In-bevacizumab uptake. Future studies should elucidate the role of VEGF-SPECT in the selection of patients and the individual dosing of bevacizumab treatment.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto , Bevacizumab , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica/métodos , Radioisótopos de Índio/química , Infusões Intravenosas/métodos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Fatores de Tempo
3.
Pediatr Res ; 68(1): 10-5, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20386142

RESUMO

Intrauterine malnutrition is associated with increased susceptibility to chronic diseases in adulthood. Growth-restricted infants display a less favorable lipid profile already shortly postnatal. Maternal low protein diet (LPD) during gestation is a well-defined model of fetal programming in rodents and affects lipid metabolism of the offspring. Effects of LPD throughout gestation on physiologic relevant parameters of lipid metabolism are unclear. We aimed to determine effects of LPD on maternal-fetal cholesterol fluxes and fetal lipid synthesis in mice. Pregnant mice (dams) were fed with a control (18% casein) or an LPD (9% casein) from E0.5 onward. We quantified maternal-fetal cholesterol transport and maternal cholesterol absorption at E19.5 using stable isotopes. We determined fetal lipid biosynthesis at E19.5, after administration of (1-C)-acetate from E17.5 onward. LPD did not change fetal and maternal plasma and hepatic concentrations of cholesterol and triglycerides. LPD affected neither the magnitudes of maternal-fetal cholesterol flux, maternal cholesterol absorption, nor fetal synthesis of cholesterol and palmitate (both groups, approximately 14% and approximately 13%, respectively). We conclude that LPD throughout gestation in mice does not affect maternal-fetal cholesterol transport, fetal cholesterol or fatty acid synthesis, indicating that programming effects of LPD are not mediated by short-term changes in maternal-fetal lipid metabolism.


Assuntos
Colesterol/metabolismo , Transtornos da Nutrição Fetal/metabolismo , Lipídeos/biossíntese , Troca Materno-Fetal/fisiologia , Insuficiência Placentária/metabolismo , Adulto , Animais , Peso Corporal , Feminino , Retardo do Crescimento Fetal/metabolismo , Feto/anatomia & histologia , Feto/metabolismo , Idade Gestacional , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 298(2): R275-82, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19889862

RESUMO

Prenatal nutrition as influenced by the nutritional status of the mother has been identified as a determinant of adult disease. Feeding low-protein diets during pregnancy in rodents is a well-established model to induce programming events in offspring. We hypothesized that protein restriction would influence fetal lipid metabolism by inducing epigenetic adaptations. Pregnant C57BL/6J mice were exposed to a protein-restriction protocol (9% vs. 18% casein). Shortly before birth, dams and fetuses were killed. To identify putative epigenetic changes, CG-dinucleotide-rich region in the promoter of a gene (CpG island) methylation microarrays were performed on DNA isolated from fetal livers. Two hundred four gene promoter regions were differentially methylated upon protein restriction. The liver X-receptor (Lxr) alpha promoter was hypermethylated in protein-restricted pups. Lxr alpha is a nuclear receptor critically involved in control of cholesterol and fatty acid metabolism. The mRNA level of Lxra was reduced by 32% in fetal liver upon maternal protein restriction, whereas expression of the Lxr target genes Abcg5/Abcg8 was reduced by 56% and 51%, respectively, measured by real-time quantitative PCR. The same effect, although less pronounced, was observed in the fetal intestine. In vitro methylation of a mouse Lxra-promoter/luciferase expression cassette resulted in a 24-fold transcriptional repression. Our study demonstrates that, in mice, protein restriction during pregnancy interferes with DNA methylation in fetal liver. Lxra is a target of differential methylation, and Lxra transcription is dependent on DNA methylation. It is tempting to speculate that perinatal nutrition may influence adult lipid metabolism by DNA methylation, which may contribute to the epidemiological relation between perinatal/neonatal nutrition and adult disease.


Assuntos
Metilação de DNA/efeitos dos fármacos , Receptores Nucleares Órfãos/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Regiões Promotoras Genéticas/genética , Desnutrição Proteico-Calórica/genética , Desnutrição Proteico-Calórica/metabolismo , Animais , Sequência de Bases , Peso ao Nascer/fisiologia , Peso Corporal/fisiologia , Células COS , Chlorocebus aethiops , Ilhas de CpG/genética , Citidina/análogos & derivados , Citidina/farmacologia , Dieta , Epigênese Genética , Feminino , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez
5.
Am J Physiol Endocrinol Metab ; 297(5): E1171-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19724022

RESUMO

There is increasing evidence that the metabolic state of the mother during pregnancy affects long-term glucose and lipid metabolism of the offspring. The liver X receptors (LXR)α and -ß are key regulators of cholesterol, fatty acid, and glucose metabolism. LXRs are activated by oxysterols and expressed in fetal mouse liver from day 10 of gestation onward. In the present study, we aimed to elucidate whether in utero pharmacological activation of LXR would influence fetal fatty acid and glucose metabolism and whether this would affect lipid homeostasis at adult age. Exposure of pregnant mice to the synthetic LXR agonist T0901317 increased hepatic mRNA expression levels of Lxr target genes and hepatic and plasma triglyceride levels in fetuses and dams. T0901317 treatment increased absolute de novo synthesis and chain elongation of hepatic oleic acid in dams and fetuses. T0901317 exposure in utero influenced lipid metabolism in adulthood in a sex-specific manner; hepatic triglyceride content was increased (+45%) in male offspring and decreased in female offspring (-42%) when they were fed a regular chow diet compared with untreated sex controls. Plasma and hepatic lipid contents and hepatic gene expression patterns in adult male or female mice fed a high-fat diet were not affected by T0901317 pretreatment. We conclude that LXR treatment of pregnant mice induces immediate effects on lipid metabolism in dams and fetuses. Despite the profound changes during fetal life, long-term effects appeared to be rather mild and sex selective without modulating the lipid response to a high-fat diet.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/farmacologia , Hidrocarbonetos Fluorados/farmacologia , Lipídeos/sangue , Lipogênese/efeitos dos fármacos , Receptores Nucleares Órfãos/metabolismo , Sulfonamidas/farmacologia , Animais , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Feminino , Desenvolvimento Fetal/fisiologia , Feto/metabolismo , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Insulina/fisiologia , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Oleicos/biossíntese , Receptores Nucleares Órfãos/agonistas , Gravidez , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...