Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 66(26): 8867-71, 2001 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-11749617

RESUMO

A series of diphosphite, phosphine-phosphite, and thioether-phosphite ligands 1-5 with a furanoside backbone have been used in the enantioselective palladium-catalyzed allylic substitution of rac-1,3-diphenyl-2-propenyl acetate giving low to high enantioselectivies (from close to 0% to 97% ee). The modular nature of these ligands enables systematic investigations of the effect of the ligand structure on the enantioselectivity. The enantioselectivity is mainly determined by the configuration of the stereogenic center C-3 of the furanose backbone. From this we conclude that the attack of the nucleophile takes place trans toward the donating group at the stereogenic C-5 atom. Systematic variation of the donor group attached to the carbon atom C-5 indicated that the presence of a bulky phosphite functionality has a positive effect on enantioselectivity. Thus, the highest ee's are obtained using the bulky diphosphite ligand 1b containing a xylofuranoside backbone.

2.
Inorg Chem ; 40(14): 3363-72, 2001 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-11421681

RESUMO

X-ray crystal structures of a series of cationic (P-P)palladium(1,1-(CH(3))(2)C(3)H(3)) complexes (P-P = dppe (1,2-bis(diphenylphosphino)ethane), dppf (1,1'-bis(diphenylphosphino)ferrocene), and DPEphos (2,2'-bis(diphenylphosphino)diphenyl ether)) and the (Xantphos)Pd(C(3)H(5))BF(4) (Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) complex have been determined. In the solid state structure, the phenyl rings of the ligand are oriented in the direction of the nonsymmetrically bound [1,1-(CH(3))(2)C(3)H(3)] moiety. An increase of the bite angle of the chelating ligand results in an increase of the cone angle. In complexes containing ligands having a large cone angle, the distances between the phenyl rings and the allyl moiety become small, resulting in a distortion of the symmetry of the palladium-allyl bond. In solution, two types of dynamic exchange have been observed, the pi-sigma rearrangement and the apparent rotation of the allyl moiety. At the same time, the folded structure of the ligand changes from an endo to an exo orientation or vice versa. The regioselectivity in the palladium-catalyzed allylic alkylation of 3-methyl-but-2-enyl acetate is determined by the cone angle of the bidentate phosphine ligand. Nucleophilic attack by a malonate anion takes place preferentially at the allylic carbon atom having the largest distance to palladium. Ligands with a larger cone angle direct the regioselectivity to the formation of the branched product, from 8% for dppe (1) to 61% found for Xantphos (6). The influence of the cone angle on the regioselectivity has been assigned to a sterically induced electronic effect.

3.
Chemistry ; 7(2): 475-82, 2001 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-11271534

RESUMO

[Pd(P-O-P)(Ar)]+ complexes with ligands that have wide bite angles are active catalysts for the coupling of aniline derivatives with aryl triflates. Kinetic studies show that for these systems a fast equilibrium that involves coordination of the amine precedes the deprotonation, which is the rate-limiting step of the reaction. This reaction is faster for compounds with a smaller P-Pd-P angle. When halide salts are present, the base sodium tert-butoxide is activated and adds to the palladium complex. This rate-limiting step is preceded by a fast equilibrium that involves decoordination of the halide. The initial reaction rate is faster for compounds with a larger P-Pd-P angle. This is due to the closer proximity of the oxygen to the Pd center, and this assists in the dissociation of the halide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA