Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1332791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414549

RESUMO

General anesthesia is routinely used in endovascular thrombectomy procedures, for which volatile gas and/or intravenous propofol are recommended. Emerging evidence suggests propofol may have superior effects on disability and/or mortality rates, but a mode-of-action underlying these class-specific effects remains unknown. Here, a moderate isoflurane or propofol dosage on experimental stroke outcomes was retrospectively compared using serial multiparametric MRI and behavioral testing. Adult male rats (N = 26) were subjected to 90-min filament-induced transient middle cerebral artery occlusion. Diffusion-, T2- and perfusion-weighted MRI was performed during occlusion, 0.5 h after recanalization, and four days into the subacute phase. Sequels of ischemic damage-blood-brain barrier integrity, cerebrovascular reactivity and sensorimotor functioning-were assessed after four days. While size and severity of ischemia was comparable between groups during occlusion, isoflurane anesthesia was associated with larger lesion sizes and worsened sensorimotor functioning at follow-up. MRI markers indicated that cytotoxic edema persisted locally in the isoflurane group early after recanalization, coinciding with burgeoning vasogenic edema. At follow-up, sequels of ischemia were further aggravated in the post-ischemic lesion, manifesting as increased blood-brain barrier leakage, cerebrovascular paralysis and cerebral hyperperfusion. These findings shed new light on how isoflurane, and possibly similar volatile agents, associate with persisting injurious processes after recanalization that contribute to suboptimal treatment outcome.

2.
ACS Biomater Sci Eng ; 9(2): 760-772, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36681938

RESUMO

Hydrogels have been suggested as novel drug delivery systems for sustained release of therapeutic proteins in various neurological disorders. The main advantage these systems offer is the controlled, prolonged exposure to a therapeutically effective dose of the released drug after a single intracerebral injection. Characterization of controlled release of therapeutics from a hydrogel is generally performed in vitro, as current methods do not allow for in vivo measurements of spatiotemporal distribution and release kinetics of a loaded protein. Importantly, the in vivo environment introduces many additional variables and factors that cannot be effectively simulated under in vitro conditions. To address this, in the present contribution, we developed a noninvasive in vivo magnetic resonance imaging (MRI) method to monitor local protein release from two injected hydrogels of the same chemical composition but different initial water contents. We designed a biodegradable hydrogel formulation composed of low and high concentration thermosensitive polymer and thiolated hyaluronic acid, which is liquid at room temperature and forms a gel due to a combination of physical and chemical cross-linking upon injection at 37 °C. The in vivo protein release kinetics from these gels were assessed by MRI analysis utilizing a model protein labeled with an MR contrast agent, i.e. gadolinium-labeled albumin (74 kDa). As proof of principle, the release kinetics of the hydrogels were first measured with MRI in vitro. Subsequently, the protein loaded hydrogels were administered in male Wistar rat brains and the release in vivo was monitored for 21 days. In vitro, the thermosensitive hydrogels with an initial water content of 81 and 66% released 64 ± 3% and 43 ± 3% of the protein loading, respectively, during the first 6 days at 37 °C. These differences were even more profound in vivo, where the thermosensitive hydrogels released 83 ± 16% and 57 ± 15% of the protein load, respectively, 1 week postinjection. Measurement of volume changes of the gels over time showed that the thermosensitive gel with the higher polymer concentration increased more than 4-fold in size in vivo after 3 weeks, which was substantially different from the in vitro behavior where a volume change of 35% was observed. Our study demonstrates the potential of MRI to noninvasively monitor in vivo intracerebral protein release from a locally administered in situ forming hydrogel, which could aid in the development and optimization of such drug delivery systems for brain disorders.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Ratos , Animais , Masculino , Hidrogéis/química , Ratos Wistar , Polímeros , Proteínas , Imageamento por Ressonância Magnética
3.
Neurorehabil Neural Repair ; 35(11): 1010-1019, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34546138

RESUMO

Background. Recovery of motor function after stroke appears to be related to the integrity of axonal connections in the corticospinal tract (CST) and corpus callosum, which may both be affected after cortical stroke. Objective. In the present study, we aimed to elucidate the relationship of changes in measures of the CST and transcallosal tract integrity, with the interhemispheric functional connectivity and sensorimotor performance after experimental cortical stroke. Methods. We conducted in vivo diffusion magnetic resonance imaging (MRI), resting-state functional MRI, and behavior testing in twenty-five male Sprague Dawley rats recovering from unilateral photothrombotic stroke in the sensorimotor cortex. Twenty-three healthy rats served as controls. Results. A reduction in the number of reconstructed fibers, a lower fractional anisotropy, and higher radial diffusivity in the ipsilesional but intact CST, reflected remote white matter degeneration. In contrast, transcallosal tract integrity remained preserved. Functional connectivity between the ipsi- and contralesional forelimb regions of the primary somatosensory cortex significantly reduced at week 8 post-stroke. Comparably, usage of the stroke-affected forelimb was normal at week 28, following significant initial impairment between day 1 and week 8 post-stroke. Conclusions. Our study shows that post-stroke motor recovery is possible despite degeneration in the CST and may be supported by intact neuronal communication between hemispheres.


Assuntos
Corpo Caloso/patologia , Atividade Motora/fisiologia , Tratos Piramidais/patologia , Recuperação de Função Fisiológica/fisiologia , Córtex Sensório-Motor/patologia , Acidente Vascular Cerebral/patologia , Substância Branca/patologia , Animais , Comportamento Animal/fisiologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/fisiopatologia , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/fisiopatologia , Ratos , Ratos Sprague-Dawley , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiopatologia
4.
Neurorehabil Neural Repair ; 35(5): 457-467, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33825580

RESUMO

BACKGROUND: Assessment of skilled reaching enables extensive analysis of upper limb function in clinical and preclinical studies on poststroke outcome. However, translational research if often limited by lack of correspondence between tests of human and rodent motor function. OBJECTIVES: To determine (1) the translational value of skilled reaching performance for preclinical research by comparing the behavioral recovery profiles of skilled reaching characteristics between humans and rats recovering from stroke and (2) the relationship between skilled reaching performance and commonly used clinical outcome measures after stroke. METHODS: Twelve patients with ischemic or hemorrhagic stroke and 17 rats with photothrombotic stroke underwent an equivalent skilled reaching test at different time points, representing early to late subacute stages poststroke. Success scores and a movement element rating scale were used to measure the skilled reaching performance. The Fugl-Meyer Upper Extremity (FM-UE) assessment and the Action Research Arm Test (ARAT) were used as clinical outcome measures. RESULTS: Both species had muscle flaccidity at the early subacute stage after stroke and showed motor recovery following a proximal-distal principle toward the early subacute stage, albeit for rats within a shorter time course. Human skilled reaching scores and FM-UE and ARAT scores in the first 3 months poststroke were significantly correlated (P < .05). CONCLUSIONS: Our study demonstrates that poststroke changes in skilled reaching performance are highly similar between rats and humans and correspond with standard clinical outcome measures. Skilled reaching testing therefore offers an effective and highly translational means for assessment of motor recovery in experimental and clinical stroke settings.


Assuntos
Atividade Motora , Avaliação de Resultados em Cuidados de Saúde , Desempenho Psicomotor , Recuperação de Função Fisiológica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/terapia , Extremidade Superior , Idoso , Animais , Comportamento Animal/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/fisiopatologia , Pesquisa Translacional Biomédica/normas , Extremidade Superior/fisiopatologia
5.
Front Neuroinform ; 13: 78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038217

RESUMO

Animal whole-brain functional magnetic resonance imaging (fMRI) provides a non-invasive window into brain activity. A collection of associated methods aims to replicate observations made in humans and to identify the mechanisms underlying the distributed neuronal activity in the healthy and disordered brain. Animal fMRI studies have developed rapidly over the past years, fueled by the development of resting-state fMRI connectivity and genetically encoded neuromodulatory tools. Yet, comparisons between sites remain hampered by lack of standardization. Recently, we highlighted that mouse resting-state functional connectivity converges across centers, although large discrepancies in sensitivity and specificity remained. Here, we explore past and present trends within the animal fMRI community and highlight critical aspects in study design, data acquisition, and post-processing operations, that may affect the results and influence the comparability between studies. We also suggest practices aimed to promote the adoption of standards within the community and improve between-lab reproducibility. The implementation of standardized animal neuroimaging protocols will facilitate animal population imaging efforts as well as meta-analysis and replication studies, the gold standards in evidence-based science.

6.
Neurorehabil Neural Repair ; 32(11): 927-940, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30352528

RESUMO

BACKGROUND: Stroke is the leading cause of adult disability, but treatment options remain limited, leaving most patients with incomplete recovery. Patient and animal studies have shown potential of noninvasive brain stimulation (NIBS) strategies to improve function after stroke. However, mechanisms underlying therapeutic effects of NIBS are unclear and there is no consensus on which NIBS protocols are most effective. OBJECTIVE: Provide a review of articles that assessed effects and mechanisms of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) in animal stroke models. METHODS: Articles were searched in PubMed, including cross-references. RESULTS: Nineteen eligible studies reporting effects of rTMS or tDCS after stroke in small rodents were identified. Seventeen of those described improved functional recovery or neuroprotection compared with untreated control or sham-stimulated groups. The effects of rTMS could be related to molecular mechanisms associated with ischemic tolerance, neuroprotection, anti-apoptosis, neurogenesis, angiogenesis, or neuroplasticity. Favorable outcome appeared most effectively when using high-frequency (>5 Hz) rTMS or intermittent theta burst stimulation of the ipsilesional hemisphere. tDCS effects were strongly dependent on stimulation polarity and onset time. Although these findings are promising, most studies did not meet Good Laboratory Practice assessment criteria. CONCLUSIONS: Despite limited data availability, animal stroke model studies demonstrate potential of NIBS to promote stroke recovery through different working mechanisms. Future studies in animal stroke models should adhere to Good Laboratory Practice guidelines and aim to further develop clinically applicable treatment protocols by identifying most favorable stimulation parameters, treatment onset, adjuvant therapies, and underlying modes of action.


Assuntos
Recuperação de Função Fisiológica/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Plasticidade Neuronal/fisiologia , Acidente Vascular Cerebral/fisiopatologia
7.
Pharm Res ; 35(4): 88, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29520577

RESUMO

PURPOSE: The aim of this study was to determine the potential of magnetic resonance imaging to evaluate the biodistribution of exogenous iron within 24 h after one single injection of Venofer® (iron sucrose). METHODS: Venofer® was evaluated in vitro for its ability to generate contrast in MR images. Subsequently, iron disposition was assessed in rats with MRI, in vivo up to 3 h and post mortem at 24 h after injection of Venofer®, at doses of 10- and 40 mg/kg body weight (n = 2 × 4), or saline (n = 4). RESULTS: Within 10-20 min after injection of Venofer®, transverse relaxation rates (R2) clearly increased, representative of a local increase in iron concentration, in liver, spleen and kidney, including the kidney medulla and cortex. In liver and spleen R2 values remained elevated up to 3 h post injection, while the initial R2 increase in the kidney was followed by gradual decrease towards baseline levels. Bone marrow and muscle tissue did not show significant increases in R2 values. Whole-body post mortem MRI showed most prominent iron accumulation in the liver and spleen at 24 h post injection, which corroborated the in vivo results. CONCLUSIONS: MR imaging is a powerful imaging modality for non-invasive assessment of iron distribution in organs. It is recommended to use this whole-body imaging approach complementary to other techniques that allow quantification of iron disposition at a (sub)cellular level.


Assuntos
Óxido de Ferro Sacarado/farmacocinética , Hematínicos/farmacocinética , Imageamento por Ressonância Magnética , Imagem Corporal Total , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Óxido de Ferro Sacarado/administração & dosagem , Meia-Vida , Hematínicos/administração & dosagem , Injeções Intravenosas , Rim/diagnóstico por imagem , Rim/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Baço/diagnóstico por imagem , Baço/metabolismo , Distribuição Tecidual
8.
Appl Spectrosc ; 72(2): 241-250, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28905634

RESUMO

Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Processamento de Imagem Assistida por Computador/métodos , Espectrometria de Massas/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Árvores de Decisões , Análise dos Mínimos Quadrados , Masculino , Ratos , Ratos Sprague-Dawley
9.
Neuroimage ; 156: 109-118, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28502844

RESUMO

Linking neural circuit activation at whole-brain level to neuronal activity at cellular level remains one of the major challenges in neuroscience research. We set up a novel functional neuroimaging approach to map global effects of locally induced activation of specific midbrain projection neurons using chemogenetics (Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-technology) combined with pharmacological magnetic resonance imaging (phMRI) in the rat mesocorticolimbic system. Chemogenetic activation of DREADD-targeted mesolimbic or mesocortical pathways, i.e. projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc) or medial prefrontal cortex (mPFC), respectively, induced significant blood oxygenation level-dependent (BOLD) responses in areas with DREADD expression, but also in remote defined neural circuitry without DREADD expression. The time-course of brain activation corresponded with the behavioral output measure, i.e. locomotor (hyper)activity, in the mesolimbic pathway-targeted group. Chemogenetic activation specifically increased neuronal activity, whereas functional connectivity assessed with resting state functional MRI (rs-fMRI) remained stable. Positive and negative BOLD responses distinctively reflected simultaneous ventral pallidum activation and substantia nigra pars reticulata deactivation, respectively, demonstrating the concept of mesocorticolimbic network activity with concurrent activation of the direct and indirect pathways following stimulation of specific midbrain projection neurons. The presented methodology provides straightforward and widely applicable opportunities to elucidate relationships between local neuronal activity and global network activity in a controllable manner, which will increase our understanding of the functioning and dysfunctioning of large-scale neuronal networks in health and disease.


Assuntos
Mapeamento Encefálico/métodos , Mesencéfalo/fisiologia , Vias Neurais/fisiologia , Animais , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos , Ratos Wistar
10.
Transl Stroke Res ; 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28509283

RESUMO

Molecular MRI allows in vivo detection of vascular cell adhesion molecules expressed on inflamed endothelium, which enables detection of specific targets for anti-neuroinflammatory treatment. We explored to what extent MR contrast agent targeted to intercellular adhesion molecule-1 (ICAM-1) could detect endothelial- and leukocyte-associated ICAM-1 expression at different stages after experimental stroke. Furthermore, we assessed potential interfering effects of ICAM-1-targeted contrast agent on post-stroke lesion growth. Micron-sized particles of iron oxide (MPIO) functionalized with control IgG (IgG-MPIO) or anti-ICAM-1 antibody (αICAM-1-MPIO) were administrated at 1, 2, 3, 7, and 21 days after unilateral transient middle cerebral artery occlusion in mice, followed by in vivo MRI and postmortem immunohistochemistry. αICAM-1-MPIO induced significant contrast effects in the lesion core on post-stroke days 1, 2, and 3, and in the lesion borderzone and contralesional tissue on post-stroke day 2. αICAM-1-MPIO were confined to ICAM-1-positive vessels and occasionally co-localized with leukocytes. On post-stroke day 21, abundant leukocyte-associated αICAM-1-MPIO was immunohistochemically detected in the lesion core. However, MRI-based detection of αICAM-1-MPIO-labeled leukocytes was confounded by pre-contrast MRI hypointensities, presumably caused by phagocytosed blood remains. IgG-MPIO did not induce significant MRI contrast effects at 1 h after injection. Lesion development was not affected by injection of αICAM-1-MPIO or IgG-MPIO. αICAM-1-MPIO are suitable for in vivo MRI of ICAM-1 expression on vascular endothelium and leukocytes at different stages after stroke. Development of clinically applicable MPIO may offer unique opportunities for MRI-based diagnosis of neuroinflammation and identification of anti-inflammatory targets in acute stroke patients.

11.
Transl Stroke Res ; 8(3): 294-305, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27981484

RESUMO

Hyperglycemia at stroke onset is associated with poor long-term clinical outcome in numerous studies. Hyperglycemia induces intracellular acidosis, lipid peroxidation, and peroxynitrite production resulting in the generation of oxidative and nitrosative stress in the ischemic tissue. Here, we studied the effects of acute hyperglycemia on in vivo intercellular adhesion molecule-1 (ICAM-1) expression, neutrophil recruitment, and brain damage after ischemia/reperfusion in mice and tested whether the natural antioxidant uric acid was protective. Hyperglycemia was induced by i.p. administration of dextrose 45 min before transient occlusion of the middle cerebral artery. Magnetic resonance imaging (MRI) was performed at 24 h to measure lesion volume. A group of normoglycemic and hyperglycemic mice received an i.v. injection of micron-sized particles of iron oxide (MPIOs), conjugated with either anti-ICAM-1 antibody or control IgG, followed by T2*w MRI. Neutrophil infiltration was studied by immunofluorescence and flow cytometry. A group of hyperglycemic mice received an i.v. infusion of uric acid (16 mg/kg) or the vehicle starting after 45 min of reperfusion. ICAM-1-targeted MPIOs induced significantly larger MRI contrast-enhancing effects in the ischemic brain of hyperglycemic mice, which also showed more infiltrating neutrophils and larger lesions than normoglycemic mice. Uric acid reduced infarct volume in hyperglycemic mice but it did not prevent vascular ICAM-1 upregulation and did not significantly reduce the number of neutrophils in the ischemic brain tissue. In conclusion, hyperglycemia enhances stroke-induced vascular ICAM-1 and neutrophil infiltration and exacerbates the brain lesion. Uric acid reduces the lesion size after ischemia/reperfusion in hyperglycemic mice.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológico , Hiperglicemia , Ácido Úrico/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Infarto Cerebral/patologia , Hiperglicemia/complicações , Molécula 1 de Adesão Intercelular/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Endogâmicos C57BL , Reperfusão/métodos
12.
Contrast Media Mol Imaging ; 8(5): 393-401, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23740809

RESUMO

An increasing amount of studies have provided evidence for vascular remodeling, for example, angiogenesis, after cerebral ischemia, which may play a significant role in post-stroke brain plasticity and recovery. Molecular imaging can provide unique in vivo whole-brain information on alterations in the expression of specific endothelial markers. A possible target for molecular magnetic resonance imaging (MRI) of post-stroke (neo)vascularization is platelet endothelial cell adhesion molecule-1 (PECAM-1). Here we describe significantly increased PECAM-1 mRNA levels in ipsilesional brain tissue at 6 h, 24 h and 3 days after transient middle cerebral artery occlusion in mice, and elevated PECAM-1 staining throughout the lesion at 3, 7 and 21 days post-stroke. The potential of micron-sized particles of iron oxide (MPIO) conjugated with PECAM-1-targeted antibodies, that is, αPECAM-1-MPIO, to expose stroke-induced PECAM-1 upregulation with molecular MRI was assessed. In vitro studies demonstrated that PECAM-1-expressing brain endothelial cells could be effectively labeled with αPECAM-1-MPIO, giving rise to a fourfold increase in MRI relaxation rate R2. Injection of near-infrared fluorescent dye-labeled αPECAM-1 showed target specificity and dose efficiency of the antibody for detection of brain endothelial cells at 3 days post-stroke. However, in vivo molecular MRI at 3 and 7 days after stroke revealed no αPECAM-1-MPIO-based contrast enhancement, which was corroborated by the absence of αPECAM-1-MPIO in post mortem brain tissue. This indicates that this molecular MRI approach, which has been proven successful for in vivo detection of other types of cell adhesion molecules, is not invariably effective for MRI-based assessment of stroke-induced alterations in expression of cerebrovascular markers.


Assuntos
Meios de Contraste/administração & dosagem , Compostos Férricos/administração & dosagem , Angiografia por Ressonância Magnética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Isquemia Encefálica/patologia , Meios de Contraste/química , Compostos Férricos/química , Regulação da Expressão Gênica , Humanos , Infarto da Artéria Cerebral Média/patologia , Camundongos , Imagem Molecular , Neovascularização Fisiológica , Tamanho da Partícula , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/química , Radiografia , Acidente Vascular Cerebral/patologia
13.
Mol Imaging Biol ; 15(4): 411-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23400400

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) with targeted contrast agents provides a promising means for diagnosis and treatment monitoring after cerebrovascular injury. Our goal was to demonstrate the feasibility of this approach to detect the neuroinflammatory biomarker intercellular adhesion molecule-1 (ICAM-1) after stroke and to establish a most efficient imaging procedure. PROCEDURES: We compared two types of ICAM-1-functionalized contrast agent: T 1-shortening gadolinium chelate-containing liposomes and T2(*)-shortening micron-sized iron oxide particles (MPIO). Binding efficacy and MRI contrast effects were tested in cell cultures and a mouse stroke model. RESULTS: Both ICAM-1-targeted agents bound effectively to activated cerebrovascular cells in vitro, generating significant MRI contrast-enhancing effects. Direct in vivo MRI-based detection after stroke was only achieved with ICAM-1-targeted MPIO, although both contrast agents showed similar target-specific vascular accumulation. CONCLUSIONS: Our study demonstrates the potential of in vivo MRI of post-stroke ICAM-1 upregulation and signifies target-specific MPIO as most suitable contrast agent for molecular MRI of cerebrovascular inflammation.


Assuntos
Meios de Contraste , Molécula 1 de Adesão Intercelular/genética , Imageamento por Ressonância Magnética , Material Particulado , Acidente Vascular Cerebral/diagnóstico , Regulação para Cima/genética , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Linhagem Celular , Células Endoteliais/metabolismo , Compostos Férricos , Gadolínio , Inflamação/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Mudanças Depois da Morte , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
14.
Bioconjug Chem ; 23(5): 941-50, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22471239

RESUMO

Inorganic nanocrystals have a variety of applications in medicine. They may serve as contrast agents, therapeutics, and for in vitro diagnostics. Frequently, the synthesis route yields hydrophobically capped nanocrystals, which necessitates their subsequent coating to render a water-soluble and biocompatible probe. Biocompatibility is crucial for cellular imaging applications, which require large quantities of diagnostically active nanoparticles to be loaded into cells. We have previously reported the design and synthesis of a fluorescent and magnetic resonance imaging-detectable core-shell nanoparticle that encapsulates hydrophobically coated iron oxide nanocrystals. The core of soybean oil and iron oxide is covered by a shell mixture of phospholipids, some of which contained polyethylene glycol. Despite the biocompatibility of these components, we hypothesize that we can improve this formulation with respect to in vitro toxicity. To this aim, we measured the effect of six different core compositions on nanoparticle structure, cell labeling efficacy, and cell viability, as well as cell tracking potential. We methodically investigated the causes of toxicity and conclude that, even when combining biocompatible materials, the resulting formulation is not guaranteed to be biocompatible.


Assuntos
Meios de Contraste/análise , Compostos Férricos/análise , Imageamento por Ressonância Magnética , Nanopartículas/análise , Animais , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/toxicidade , Compostos Férricos/toxicidade , Corantes Fluorescentes/análise , Corantes Fluorescentes/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/ultraestrutura , Camundongos , Microscopia de Fluorescência , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Polietilenoglicóis/análise , Polietilenoglicóis/toxicidade
15.
Cerebrovasc Dis ; 33(4): 392-402, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22456323

RESUMO

Cellular and molecular magnetic resonance imaging (MRI) strategies for studying the spatiotemporal profile of neuroinflammatory processes after stroke are increasingly being explored since the first reports appeared about a decade ago. These strategies most often employ (super)paramagnetic contrast agents, such as (ultra)small particles of iron oxide and gadolinium chelates, for MRI-based detection of specific leukocyte populations or molecular inflammatory markers that are involved in the pathophysiology of stroke or plasticity. In this review we describe achievements, limitations and prospects in the field of cellular and molecular MRI of neuroinflammation in preclinical and clinical stroke. Several studies in rodent stroke models have demonstrated the application of MRI contrast agents for imaging of monocyte infiltration, which served as the foundation for pilot (small-scale proof-of-concept) cellular MRI studies in stroke patients. This may be achieved with isolated cells that are loaded with contrast agent through in vitro incubation prior to systemic administration. Alternatively, superparamagnetic iron oxide particles may be directly injected into the circulation to allow in vivo uptake by phagocytic cells. Both strategies have been successfully employed to measure the spatiotemporal profile of invasion of monocytes in and around cerebral ischemic lesions in experimental stroke models. Molecular MRI studies with target-specific contrast agents have shown the capability for in vivo detection of molecular markers after experimental stroke. For example, (super)paramagnetic micro- or nanoparticles that are functionalized with a ligand (e.g. an antibody) for specific cell adhesion molecules, such as E-selectin and vascular cell adhesion molecule 1 (VCAM-1), can target inflamed, activated endothelium, whose presence can subsequently be detected with MRI. Present applications remain limited as most of the currently available contrast agents provide relatively poor contrast enhancement, which is not easily discriminated from endogenous sources of tissue contrast. Nevertheless, current developments of more efficient particles, such as biocompatible liposomes, micelles and nanoemulsions that can contain high payloads of (super)paramagnetic material as well as other substances, such as dyes and drugs, may open a window of opportunities for promising translational multimodal imaging strategies that enable in vivo assessment of (neuroinflammatory) disease markers, therapeutic targets as well as drug delivery after stroke.


Assuntos
Encéfalo/patologia , Inflamação/patologia , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/patologia , Animais , Biomarcadores , Corantes , Meios de Contraste , Compostos Férricos , Humanos , Leucócitos/patologia , Neuroimagem/métodos
16.
Bioconjug Chem ; 21(10): 1794-803, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20804153

RESUMO

Apoptosis and macrophage burden are believed to correlate with atherosclerotic plaque vulnerability and are therefore considered important diagnostic and therapeutic targets for atherosclerosis. These cell types are characterized by the exposure of phosphatidylserine (PS) at their surface. In the present study, we developed and applied a small micellar fluorescent annexin A5-functionalized nanoparticle for noninvasive magnetic resonance imaging (MRI) of PS exposing cells in atherosclerotic lesions. Annexin A5-mediated target-specificity was confirmed with ellipsometry and in vitro binding to apoptotic Jurkat cells. In vivo T(1)-weighted MRI of the abdominal aorta in atherosclerotic ApoE(-/-) mice revealed enhanced uptake of the annexin A5-micelles as compared to control-micelles, which was corroborated with ex vivo near-infrared fluorescence images of excised whole aortas. Confocal laser scanning microscopy (CLSM) demonstrated that the targeted agent was associated with macrophages and apoptotic cells, whereas the nonspecific control agent showed no clear uptake by such cells. In conclusion, the annexin A5-conjugated bimodal micelles displayed potential for noninvasive assessment of cell types that are considered to significantly contribute to plaque instability and therefore may be of great value in the assessment of atherosclerotic lesion phenotype.


Assuntos
Anexina A5/química , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Nanoconjugados/química , Placa Aterosclerótica/diagnóstico , Placa Aterosclerótica/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Transporte Biológico , Meios de Contraste , Gadolínio/química , Técnicas de Inativação de Genes , Humanos , Células Jurkat , Masculino , Camundongos , Micelas , Microscopia de Fluorescência , Fosfatidilserinas/química , Placa Aterosclerótica/patologia
17.
Angiogenesis ; 13(2): 161-73, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20390447

RESUMO

Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy.


Assuntos
Diagnóstico por Imagem/métodos , Lipossomos/metabolismo , Magnetismo/métodos , Neoplasias/irrigação sanguínea , Neovascularização Patológica/diagnóstico , Neovascularização Patológica/terapia , Animais , Fluorescência , Neoplasias/patologia
18.
Methods Mol Biol ; 624: 325-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20217606

RESUMO

Apoptosis, or programmed cell death, is a morphologically and biochemically distinct form of cell death, which together with proliferation plays an important role in tissue development and homeostasis. Insufficient apoptosis is important in the pathology of various disorders such as cancer and autoimmune diseases, whereas a high apoptotic activity is associated with myocardial infarction, neurodegenerative diseases, and advanced atherosclerotic lesions. Consequently, apoptosis is recognized as an important therapeutic target, which should be either suppressed, e.g., during an ischemic cardiac infarction, or promoted, e.g., in the treatment of cancerous lesions. Imaging tools to address location, amount, and time course of apoptotic activity non-invasively in vivo are therefore of great clinical use in the evaluation of such therapies. This chapter reviews current literature and new developments in the application of nanoparticles for non-invasive apoptosis imaging. Focus is on functionalized nanoparticle contrast agents for MR imaging and bimodal nanoparticle agents that combine magnetic and fluorescent properties.


Assuntos
Apoptose , Imageamento por Ressonância Magnética/métodos , Nanotecnologia/métodos , Animais , Meios de Contraste , Humanos , Miocárdio/patologia , Neoplasias/diagnóstico
19.
FASEB J ; 24(6): 1689-99, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20075195

RESUMO

High density lipoprotein (HDL), an endogenous nanoparticle, transports fat throughout the body and is capable of transferring cholesterol from atheroma in the vessel wall to the liver. In the present study, we utilized HDL as a multimodal nanoparticle platform for tumor targeting and imaging via nonspecific accumulation and specific binding to angiogenically activated blood vessels. We reconstituted HDL (rHDL) with amphiphilic gadolinium chelates and fluorescent dyes. To target angiogenic endothelial cells, rHDL was functionalized with alphavbeta3-integrin-specific RGD peptides (rHDL-RGD). Nonspecific RAD peptides were conjugated to rHDL nanoparticles as a control (rHDL-RAD). It was observed in vitro that all 3 nanoparticles were phagocytosed by macrophages, while alphavbeta3-integrin-specific rHDL-RGD nanoparticles were preferentially taken up by endothelial cells. The uptake of nanoparticles in mouse tumors was evaluated in vivo using near infrared (NIR) and MR imaging. All nanoparticles accumulated in tumors but with very different accumulation/binding kinetics as observed by NIR imaging. Moreover, confocal microscopy revealed rHDL-RGD to be associated with tumor endothelial cells, while rHDL and rHDL-RAD nanoparticles were mainly found in the interstitial space. This study demonstrates the ability to reroute HDL from its natural targets to tumor blood vessels and its potential for multimodal imaging of tumor-associated processes.


Assuntos
Lipoproteínas HDL , Sondas Moleculares , Nanopartículas , Neoplasias Experimentais/irrigação sanguínea , Neovascularização Patológica/diagnóstico , Oligopeptídeos , Sarcoma de Ewing/irrigação sanguínea , Animais , Células Cultivadas , Endotélio Vascular/metabolismo , Humanos , Técnicas Imunoenzimáticas , Integrina alfaVbeta3/metabolismo , Lipoproteínas HDL/química , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Microscopia Confocal , Imagem Molecular , Neoplasias Experimentais/metabolismo , Neovascularização Patológica/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Fagocitose , Sarcoma de Ewing/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Distribuição Tecidual , Veias Umbilicais/citologia
20.
Acc Chem Res ; 42(7): 904-14, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19435319

RESUMO

Modern medicine has greatly benefited from recent dramatic improvements in imaging techniques. The observation of physiological events through interactions manipulated at the molecular level offers unique insight into the function (and dysfunction) of the living organism. The tremendous advances in the development of nanoparticulate molecular imaging agents over the past decade have made it possible to noninvasively image the specificity, pharmacokinetic profiles, biodistribution, and therapeutic efficacy of many novel compounds. Several types of nanoparticles have demonstrated utility for biomedical purposes, including inorganic nanocrystals, such as iron oxide, gold, and quantum dots. Moreover, natural nanoparticles, such as viruses, lipoproteins, or apoferritin, as well as hybrid nanostructures composed of inorganic and natural nanoparticles, have been applied broadly. However, among the most investigated nanoparticle platforms for biomedical purposes are lipidic aggregates, such as liposomal nanoparticles, micelles, and microemulsions. Their relative ease of preparation and functionalization, as well as the ready synthetic ability to combine multiple amphiphilic moieties, are the most important reasons for their popularity. Lipid-based nanoparticle platforms allow the inclusion of a variety of imaging agents, ranging from fluorescent molecules to chelated metals and nanocrystals. In recent years, we have created a variety of multifunctional lipid-based nanoparticles for molecular imaging; many are capable of being used with more than one imaging technique (that is, with multimodal imaging ability). These nanoparticles differ in size, morphology, and specificity for biological markers. In this Account, we discuss the development and characterization of five different particles: liposomes, micelles, nanocrystal micelles, lipid-coated silica, and nanocrystal high-density lipoprotein (HDL). We also demonstrate their application for multimodal molecular imaging, with the main focus on magnetic resonance imaging (MRI), optical techniques, and transmission electron microscopy (TEM). The functionalization of the nanoparticles and the modulation of their pharmacokinetics are discussed. Their application for molecular imaging of key processes in cancer and cardiovascular disease are shown. Finally, we discuss a recent development in which the endogenous nanoparticle HDL was modified to carry different diagnostically active nanocrystal cores to enable multimodal imaging of macrophages in experimental atherosclerosis. The multimodal characteristics of the different contrast agent platforms have proven to be extremely valuable for validation purposes and for understanding mechanisms of particle-target interaction at different levels, ranging from the entire organism down to cellular organelles.


Assuntos
Diagnóstico por Imagem , Lipídeos/química , Nanopartículas , Animais , Doenças Cardiovasculares/patologia , HDL-Colesterol/química , HDL-Colesterol/metabolismo , Corantes Fluorescentes/química , Ouro/química , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/farmacologia , Imageamento por Ressonância Magnética , Magnetismo , Camundongos , Micelas , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Neoplasias/patologia , Pontos Quânticos , Dióxido de Silício/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...