Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(3): pgae094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463035

RESUMO

A practical and powerful approach for genome editing in plants is delivery of CRISPR reagents via Agrobacterium tumefaciens transformation. The double-strand break (DSB)-inducing enzyme is expressed from a transferred segment of bacterial DNA, the T-DNA, which upon transformation integrates at random locations into the host genome or is captured at the self-inflicted DSB site. To develop efficient strategies for precise genome editing, it is thus important to define the mechanisms that repair CRISPR-induced DSBs, as well as those that govern random and targeted integration of T-DNA. In this study, we present a detailed and comprehensive genetic analysis of Cas9-induced DSB repair and T-DNA capture in the model plant Arabidopsis thaliana. We found that classical nonhomologous end joining (cNHEJ) and polymerase theta-mediated end joining (TMEJ) are both, and in part redundantly, acting on CRISPR-induced DSBs to produce very different mutational outcomes. We used newly developed CISGUIDE technology to establish that 8% of mutant alleles have captured T-DNA at the induced break site. In addition, we find T-DNA shards within genomic DSB repair sites indicative of frequent temporary interactions during TMEJ. Analysis of thousands of plant genome-T-DNA junctions, followed up by genetic dissection, further reveals that TMEJ is responsible for attaching the 3' end of T-DNA to a CRISPR-induced DSB, while the 5' end can be attached via TMEJ as well as cNHEJ. By identifying the mechanisms that act to connect recombinogenic ends of DNA molecules at chromosomal breaks, and quantifying their contributions, our study supports the development of tailor-made strategies toward predictable engineering of crop plants.

2.
Plant J ; 118(1): 255-262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402589

RESUMO

Precise genetic modification can be achieved via a sequence homology-mediated process known as gene targeting (GT). Whilst established for genome engineering purposes, the application of GT in plants still suffers from a low efficiency for which an explanation is currently lacking. Recently reported reduced rates of GT in A. thaliana deficient in polymerase theta (Polθ), a core component of theta-mediated end joining (TMEJ) of DNA breaks, have led to the suggestion of a direct involvement of this enzyme in the homology-directed process. Here, by monitoring homology-driven gene conversion in plants with CRISPR reagent and donor sequences pre-integrated at random sites in the genome (in planta GT), we demonstrate that Polθ action is not required for GT, but instead suppresses the process, likely by promoting the repair of the DNA break by end-joining. This finding indicates that lack of donor integration explains the previously established reduced GT rates seen upon transformation of Polθ-deficient plants. Our study additionally provides insight into ectopic gene targeting (EGT), recombination events between donor and target that do not map to the target locus. EGT, which occurs at similar frequencies as "true" GT during transformation, was rare in our in planta GT experiments arguing that EGT predominantly results from target locus recombination with nonintegrated T-DNA molecules. By describing mechanistic features of GT our study provides directions for the improvement of precise genetic modification of plants.


Assuntos
Arabidopsis , Arabidopsis/genética , Marcação de Genes/métodos , Edição de Genes , Plantas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA por Junção de Extremidades/genética
3.
Plant J ; 109(1): 112-125, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34713516

RESUMO

Agrobacterium tumefaciens-mediated transformation has been for decades the preferred tool to generate transgenic plants. During this process, a T-DNA carrying transgenes is transferred from the bacterium to plant cells, where it randomly integrates into the genome via polymerase theta (Polθ)-mediated end joining (TMEJ). Targeting of the T-DNA to a specific genomic locus via homologous recombination (HR) is also possible, but such gene targeting (GT) events occur at low frequency and are almost invariably accompanied by random integration events. An additional complexity is that the product of recombination between T-DNA and target locus may not only map to the target locus (true GT), but also to random positions in the genome (ectopic GT). In this study, we have investigated how TMEJ functionality affects the biology of GT in plants, by using Arabidopsis thaliana mutated for the TEBICHI gene, which encodes for Polθ. Whereas in TMEJ-proficient plants we predominantly found GT events accompanied by random T-DNA integrations, GT events obtained in the teb mutant background lacked additional T-DNA copies, corroborating the essential role of Polθ in T-DNA integration. Polθ deficiency also prevented ectopic GT events, suggesting that the sequence of events leading up to this outcome requires TMEJ. Our findings provide insights that can be used for the development of strategies to obtain high-quality GT events in crop plants.


Assuntos
Arabidopsis/genética , DNA Polimerase Dirigida por DNA/genética , Marcação de Genes , Agrobacterium tumefaciens/genética , DNA Bacteriano , DNA de Plantas/genética , Recombinação Homóloga , Plantas Geneticamente Modificadas , Transgenes
4.
Plant Cell Physiol ; 60(2): 393-406, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398644

RESUMO

The large majority of core photosynthesis proteins in plants are encoded by nuclear genes, but a small portion have been retained in the plastid genome. These plastid-encoded chloroplast proteins fulfill essential roles in the process of photochemistry. Here, we report the use of nuclear-encoded, chloroplast-targeted zinc finger artificial transcription factors (ZF-ATFs) with effector domains of prokaryotic origin to modulate the expression of chloroplast genes, and to enhance the photochemical activity and growth characteristics of Arabidopsis thaliana plants. This technique was named chloroplast genome interrogation. Using this novel approach, we obtained evidence that ZF-ATFs can indeed be translocated to chloroplasts of Arabidopsis plants, can modulate their growth and operating light use efficiency of PSII, and finally can induce statistically significant changes in the expression levels of several chloroplast genes. Our data suggest that the distortion of chloroplast gene expression might be a feasible approach to manipulate the efficiency of photosynthesis in plants.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/genética , Genoma de Cloroplastos , Fatores de Transcrição/metabolismo , Dedos de Zinco , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Edição de Genes/métodos , Genes Sintéticos , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
5.
Plant Methods ; 14: 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692862

RESUMO

BACKGROUND: The formation of crossovers during meiosis is pivotal for the redistribution of traits among the progeny of sexually reproducing organisms. In plants the molecular mechanisms underlying the formation of crossovers have been well established, but relatively little is known about the factors that determine the exact location and the frequency of crossover events in the genome. In the model plant species Arabidopsis, research on these factors has been greatly facilitated by reporter lines containing linked fluorescence marker genes under control of promoters active in seeds or pollen, allowing for the visualization of crossover events by fluorescence microscopy. However, the usefulness of these reporter lines to screen for novel modulators of crossover frequency in a high throughput manner relies on the availability of programs that can accurately count fluorescent seeds. Such a program was previously not available in scientific literature. RESULTS: Here we present MeioSeed, a novel CellProfiler-based program that accurately counts GFP and RFP fluorescent Arabidopsis seeds with adjustable detection thresholds for fluorescence intensity, making use of a robust seed classifier which was trained by machine learning in Ilastik. Using the previously published reporter line Col3-4/20 as an example, we explain the use of MeioSeed and the steps taken to optimize the thresholding settings of the program to fit the published model for recombination frequency and transgene segregation. The use of MeioSeed is illustrated by investigating salt stress as a novel abiotic trigger for changes in crossover frequency in Col3-4/20 (♂) × Ler-0 (♀) F1 hybrids. Salt stress was found to trigger increases in crossover frequency between the marker genes of up to 70% compared to the control treatment without salt stress. Genotyping of control and salt treated populations revealed that the changes in crossover frequency were not limited to the region between the marker genes, but that fluctuations in crossover frequency are likely to occur genome-wide after treatment with high salt concentrations. CONCLUSIONS: MeioSeed allows for the high throughput recognition and counting of fluorescent Arabidopsis seeds and can facilitate the screening for novel abiotic and biotic modulators of crossover frequency using reporter lines in Arabidopsis.

6.
Sci Rep ; 7(1): 3314, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607440

RESUMO

The overall light energy to biomass conversion efficiency of plant photosynthesis is generally regarded as low. Forward genetic screens in Arabidopsis have yielded very few mutants with substantially enhanced photochemistry. Here, we report the isolation of a novel Arabidopsis mutant with a high operating efficiency of Photosystem II (φPSII) and low chlorophyll fluorescence from a library of lines harboring T-DNA constructs encoding artificial transcription factors. This mutant was named Low Chlorophyll Fluorescence 1 (LCF1). Only a single T-DNA insertion was detected in LCF1, which interrupted the expression of the full length mRNA of the gene At4g36280 (MORC2). We demonstrate that the high φPSII and low levels of chlorophyll fluorescence were due to a decrease in PSII:PSI ratio. Although LCF1 plants had decreased rosette surface area and biomass under normal growth conditions, they contained more starch per gram fresh weight. The growth defect of LCF1 was alleviated by low light and short day conditions, and growth could even be enhanced after a period of dark-induced senescence, showing that the plant can utilize its excess photosynthetic conversion capacity as a resource when needed.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Clorofila/metabolismo , Mutação/genética , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/crescimento & desenvolvimento , DNA Bacteriano/genética , Escuridão , Fluorescência , Genoma de Planta , Complexo de Proteína do Fotossistema I/metabolismo , Amido/metabolismo
7.
Plant Cell Environ ; 39(12): 2650-2662, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27457432

RESUMO

Soil salinity is becoming an increasingly large problem in agriculture. In this study, we have investigated whether a capacity to withstand salinity can be induced in the salinity sensitive plant species Arabidopsis thaliana, and whether it can be maintained in subsequent generations. To this end, we have used zinc finger artificial transcription factor (ZF-ATFs) mediated genome interrogation. Already within a relatively small collection Arabidopsis lines expressing ZF-ATFs, we found 41 lines that were tolerant to 100 mM NaCl. Furthermore, ZF-ATF encoding gene constructs rescued from the most strongly salinity tolerant lines were indeed found to act as dominant and heritable agents for salinity tolerance. Altogether, our data provide evidence that a silent capacity to withstand normally lethal levels of salinity exists in Arabidopsis and can be evoked relatively easily by in trans acting transcription factors like ZF-ATFs.


Assuntos
Arabidopsis/genética , Genoma de Planta/genética , Plantas Tolerantes a Sal/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Clorofila/metabolismo , Genoma de Planta/fisiologia , Mutação , Plantas Geneticamente Modificadas , Plantas Tolerantes a Sal/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Dedos de Zinco/genética , Dedos de Zinco/fisiologia
8.
Plant Sci ; 225: 58-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25017160

RESUMO

The transcriptional regulation of endogenous genes with artificial transcription factors (TFs) can offer new tools for plant biotechnology. Three systems are available for mediating site-specific DNA recognition of artificial TFs: those based on zinc fingers, TALEs, and on the CRISPR/Cas9 technology. Artificial TFs require an effector domain that controls the frequency of transcription initiation at endogenous target genes. These effector domains can be transcriptional activators or repressors, but can also have enzymatic activities involved in chromatin remodeling or epigenetic regulation. Artificial TFs are able to regulate gene expression in trans, thus allowing them to evoke dominant mutant phenotypes. Large scale changes in transcriptional activity are induced when the DNA binding domain is deliberately designed to have lower binding specificity. This technique, known as genome interrogation, is a powerful tool for generating novel mutant phenotypes. Genome interrogation has clear mechanistic and practical advantages over activation tagging, which is the technique most closely resembling it. Most notably, genome interrogation can lead to the discovery of mutant phenotypes that are unlikely to be found when using more conventional single gene-based approaches.


Assuntos
DNA de Plantas , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Engenharia Genética , Plantas/genética , Fatores de Transcrição/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...