Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
ACS Appl Mater Interfaces ; 15(10): 12766-12776, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866935

RESUMO

As the threat of antibiotic resistance increases, there is a particular focus on developing antimicrobials against pathogenic bacteria whose multidrug resistance is especially entrenched and concerning. One such target for novel antimicrobials is the ATP-binding cassette (ABC) transporter MsbA that is present in the plasma membrane of Gram-negative pathogenic bacteria where it is fundamental to the survival of these bacteria. Supported lipid bilayers (SLBs) are useful in monitoring membrane protein structure and function since they can be integrated with a variety of optical, biochemical, and electrochemical techniques. Here, we form SLBs containing Escherichia coli MsbA and use atomic force microscopy (AFM) and structured illumination microscopy (SIM) as high-resolution microscopy techniques to study the integrity of the SLBs and incorporated MsbA proteins. We then integrate these SLBs on microelectrode arrays (MEA) based on the conducting polymer poly(3,4-ethylenedioxy-thiophene) poly(styrene sulfonate) (PEDOT:PSS) using electrochemical impedance spectroscopy (EIS) to monitor ion flow through MsbA proteins in response to ATP hydrolysis. These EIS measurements can be correlated with the biochemical detection of MsbA-ATPase activity. To show the potential of this SLB approach, we observe not only the activity of wild-type MsbA but also the activity of two previously characterized mutants along with quinoline-based MsbA inhibitor G907 to show that EIS systems can detect changes in ABC transporter activity. Our work combines a multitude of techniques to thoroughly investigate MsbA in lipid bilayers as well as the effects of potential inhibitors of this protein. We envisage that this platform will facilitate the development of next-generation antimicrobials that inhibit MsbA or other essential membrane transporters in microorganisms.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Técnicas Biossensoriais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo
2.
FEBS J ; 289(13): 3770-3788, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35066976

RESUMO

The bacterial heterodimeric ATP-binding cassette (ABC) multidrug exporter PatAB has a critical role in conferring antibiotic resistance in multidrug-resistant infections by Streptococcus pneumoniae. As with other heterodimeric ABC exporters, PatAB contains two transmembrane domains that form a drug translocation pathway for efflux and two nucleotide-binding domains that bind ATP, one of which is hydrolysed during transport. The structural and functional elements in heterodimeric ABC multidrug exporters that determine interactions with drugs and couple drug binding to nucleotide hydrolysis are not fully understood. Here, we used mass spectrometry techniques to determine the subunit stoichiometry in PatAB in our lactococcal expression system and investigate locations of drug binding using the fluorescent drug-mimetic azido-ethidium. Surprisingly, our analyses of azido-ethidium-labelled PatAB peptides point to ethidium binding in the PatA nucleotide-binding domain, with the azido moiety crosslinked to residue Q521 in the H-like loop of the degenerate nucleotide-binding site. Investigation into this compound and residue's role in nucleotide hydrolysis pointed to a reduction in the activity for a Q521A mutant and ethidium-dependent inhibition in both mutant and wild type. Most transported drugs did not stimulate or inhibit nucleotide hydrolysis of PatAB in detergent solution or lipidic nanodiscs. However, further examples for ethidium-like inhibition were found with propidium, novobiocin and coumermycin A1, which all inhibit nucleotide hydrolysis by a non-competitive mechanism. These data cast light on potential mechanisms by which drugs can regulate nucleotide hydrolysis by PatAB, which might involve a novel drug binding site near the nucleotide-binding domains.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Streptococcus pneumoniae , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Etídio/metabolismo , Hidrólise , Nucleotídeos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
3.
Commun Biol ; 4(1): 1379, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887543

RESUMO

The ABC multidrug exporter MsbA mediates the translocation of lipopolysaccharides and phospholipids across the plasma membrane in Gram-negative bacteria. Although MsbA is structurally well characterised, the energetic requirements of lipid transport remain unknown. Here, we report that, similar to the transport of small-molecule antibiotics and cytotoxic agents, the flopping of physiologically relevant long-acyl-chain 1,2-dioleoyl (C18)-phosphatidylethanolamine in proteoliposomes requires the simultaneous input of ATP binding and hydrolysis and the chemical proton gradient as sources of metabolic energy. In contrast, the flopping of the large hexa-acylated (C12-C14) Lipid-A anchor of lipopolysaccharides is only ATP dependent. This study demonstrates that the energetics of lipid transport by MsbA is lipid dependent. As our mutational analyses indicate lipid and drug transport via the central binding chamber in MsbA, the lipid availability in the membrane can affect the drug transport activity and vice versa.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Metabolismo Energético , Lactococcus lactis/metabolismo , Metabolismo dos Lipídeos , Transporte Biológico , Escherichia coli/genética
4.
Commun Biol ; 4(1): 558, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976372

RESUMO

Multidrug and toxic compound extrusion (MATE) transport proteins confer multidrug resistance on pathogenic microorganisms and affect pharmacokinetics in mammals. Our understanding of how MATE transporters work, has mostly relied on protein structures and MD simulations. However, the energetics of drug transport has not been studied in detail. Many MATE transporters utilise the electrochemical H+ or Na+ gradient to drive substrate efflux, but NorM-VC from Vibrio cholerae can utilise both forms of metabolic energy. To dissect the localisation and organisation of H+ and Na+ translocation pathways in NorM-VC we engineered chimaeric proteins in which the N-lobe of H+-coupled NorM-PS from Pseudomonas stutzeri is fused to the C-lobe of NorM-VC, and vice versa. Our findings in drug binding and transport experiments with chimaeric, mutant and wildtype transporters highlight the versatile nature of energy coupling in NorM-VC, which enables adaptation to fluctuating salinity levels in the natural habitat of V. cholerae.


Assuntos
Antiporters/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Vibrio cholerae/metabolismo , Antiporters/fisiologia , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Transporte Biológico , Resistência a Múltiplos Medicamentos/genética , Resistência a Múltiplos Medicamentos/fisiologia , Hidrogênio/química , Hidrogênio/metabolismo , Íons/metabolismo , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Ligação Proteica , Sódio/química , Sódio/metabolismo , Vibrio cholerae/fisiologia
5.
Sci Rep ; 10(1): 20026, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208856

RESUMO

Multidrug transporters can confer drug resistance on cells by extruding structurally unrelated compounds from the cellular interior. In transport assays, Hoechst 33342 (referred to as Hoechst) is a commonly used substrate, the fluorescence of which changes in the transport process. With three basic nitrogen atoms that can be protonated, Hoechst can exist as cationic and neutral species that have different fluorescence emissions and different abilities to diffuse across cell envelopes and interact with lipids and intracellular nucleic acids. Due to this complexity, the mechanism of Hoechst transport by multidrug transporters is poorly characterised. We investigated Hoechst transport by the bacterial major facilitator superfamily multidrug-proton antiporter LmrP in Lactococcus lactis and developed a novel assay for the direct quantitation of cell-associated Hoechst. We observe that changes in Hoechst fluorescence in cells do not always correlate with changes in the amount of Hoechst. Our data indicate that chemical proton gradient-dependent efflux by LmrP in cells converts populations of highly fluorescent, membrane-intercalated Hoechst in the alkaline interior into populations of less fluorescent, cell surface-bound Hoechst in the acidic exterior. Our methods and findings are directly relevant for the transport of many amphiphilic antibiotics, antineoplastic agents and cytotoxic compounds that are differentially protonated within the physiological pH range.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Resistência a Múltiplos Medicamentos , Lactococcus lactis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Prótons , Proteínas de Bactérias/genética , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Mutagênese Sítio-Dirigida , Mutação
6.
FEBS Lett ; 594(23): 3908-3919, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32936941

RESUMO

To remove xenobiotics from the periplasmic space, Gram-negative bacteria utilise unique tripartite efflux systems in which a molecular engine in the plasma membrane connects to periplasmic and outer membrane subunits. Substrates bind to periplasmic sections of the engine or sometimes to the periplasmic subunits. Then, the tripartite machines undergo conformational changes that allow the movement of the substrates down the substrate translocation pathway to the outside of the cell. The transmembrane (TM) domains of the tripartite resistance-nodulation-drug-resistance (RND) transporters drive these conformational changes by converting proton motive force into mechanical motion. Similarly, the TM domains of tripartite ATP-binding cassette (ABC) transporters transmit mechanical movement associated with nucleotide binding and hydrolysis at the nucleotide-binding domains to the relevant subunits in the periplasm. In this way, metabolic energy is coupled to periplasmic alternating-access mechanisms to achieve substrate transport across the outer membrane.


Assuntos
Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Proteínas Associadas à Resistência a Múltiplos Medicamentos/classificação , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
7.
Res Microbiol ; 170(8): 392-398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31442612

RESUMO

Multidrug transporters are important and interesting molecular machines that extrude a wide variety of cytotoxic drugs from target cells. This review summarizes novel insights in the energetics and mechanisms of bacterial ATP-binding cassette multidrug transporters as well as recent advances connecting multidrug transport to ion and lipid translocation processes in other membrane proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/metabolismo , Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/fisiologia , Metabolismo Energético/fisiologia , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Transporte Biológico/fisiologia , Conformação Proteica
8.
Sci Adv ; 4(9): eaas9365, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30255140

RESUMO

LmrA is a bacterial ATP-binding cassette (ABC) multidrug exporter that uses metabolic energy to transport ions, cytotoxic drugs, and lipids. Voltage clamping in a Port-a-Patch was used to monitor electrical currents associated with the transport of monovalent cationic HEPES+ by single-LmrA transporters and ensembles of transporters. In these experiments, one proton and one chloride ion are effluxed together with each HEPES+ ion out of the inner compartment, whereas two sodium ions are transported into this compartment. Consequently, the sodium-motive force (interior negative and low) can drive this electrogenic ion exchange mechanism in cells under physiological conditions. The same mechanism is also relevant for the efflux of monovalent cationic ethidium, a typical multidrug transporter substrate. Studies in the presence of Mg-ATP (adenosine 5'-triphosphate) show that ion-coupled HEPES+ transport is associated with ATP-bound LmrA, whereas ion-coupled ethidium transport requires ATP binding and hydrolysis. HEPES+ is highly soluble in a water-based environment, whereas ethidium has a strong preference for residence in the water-repelling plasma membrane. We conclude that the mechanism of the ABC transporter LmrA is fundamentally related to that of an ion antiporter that uses extra steps (ATP binding and hydrolysis) to retrieve and transport membrane-soluble substrates from the phospholipid bilayer.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Farmacorresistência Bacteriana , Etídio/farmacocinética , HEPES/farmacocinética , Concentração de Íons de Hidrogênio , Lactobacillus/efeitos dos fármacos , Lactobacillus/metabolismo , Bicamadas Lipídicas/metabolismo , Magnésio/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Técnicas de Patch-Clamp , Fosfolipídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sódio/metabolismo
9.
Nat Rev Microbiol ; 16(9): 577, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30022105

RESUMO

In the version of this Review originally published, the author contributions of co-author Arthur Neuberger were incorrectly listed. The author contributions should have appeared as 'D.D., X.W.-K., A.N., H.W.v.V., K.M.P., L.J.V.P. and B.F.L. researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and edited the manuscript before submission'. This has now been corrected in all versions of the Review. The authors apologize to readers for this error.

10.
Nat Rev Microbiol ; 16(9): 523-539, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30002505

RESUMO

Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Resistência a Múltiplos Medicamentos , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo
11.
Nat Commun ; 8(1): 1336, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109439

RESUMO

The MacA-MacB-TolC tripartite complex is a transmembrane machine that spans both plasma membrane and outer membrane and actively extrudes substrates, including macrolide antibiotics, virulence factors, peptides and cell envelope precursors. These transport activities are driven by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. Here, we present the crystal structure of MacB at 3.4-Å resolution. MacB forms a dimer in which each protomer contains a nucleotide-binding domain and four transmembrane helices that protrude in the periplasm into a binding domain for interaction with the membrane fusion protein MacA. MacB represents an ABC transporter in pathogenic microorganisms with unique structural features.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Cristalografia por Raios X , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
12.
Nat Microbiol ; 2: 17070, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504659

RESUMO

The MacA-MacB-TolC assembly of Escherichia coli is a transmembrane machine that spans the cell envelope and actively extrudes substrates, including macrolide antibiotics and polypeptide virulence factors. These transport processes are energized by the ATPase MacB, a member of the ATP-binding cassette (ABC) superfamily. We present an electron cryo-microscopy structure of the ABC-type tripartite assembly at near-atomic resolution. A hexamer of the periplasmic protein MacA bridges between a TolC trimer in the outer membrane and a MacB dimer in the inner membrane, generating a quaternary structure with a central channel for substrate translocation. A gating ring found in MacA is proposed to act as a one-way valve in substrate transport. The MacB structure features an atypical transmembrane domain with a closely packed dimer interface and a periplasmic opening that is the likely portal for substrate entry from the periplasm, with subsequent displacement through an allosteric transport mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/química , Proteínas da Membrana Bacteriana Externa/química , Microscopia Crioeletrônica , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
13.
Sci Rep ; 6: 38052, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917857

RESUMO

The expression of polyspecific membrane transporters is one important mechanism by which cells can obtain resistance to structurally different antibiotics and cytotoxic agents. These transporters reduce intracellular drug concentrations to subtoxic levels by mediating drug efflux across the cell envelope. The major facilitator superfamily multidrug transporter LmrP from Lactococcus lactis catalyses drug efflux in a membrane potential and chemical proton gradient-dependent fashion. To enable the interaction with protons and cationic substrates, LmrP contains catalytic carboxyl residues on the surface of a large interior chamber that is formed by transmembrane helices. These residues co-localise together with polar and aromatic residues, and are predicted to be present in two clusters. To investigate the functional role of the catalytic carboxylates, we generated mutant proteins catalysing membrane potential-independent dye efflux by removing one of the carboxyl residues in Cluster 1. We then relocated this carboxyl residue to six positions on the surface of the interior chamber, and tested for restoration of wildtype energetics. The reinsertion at positions towards Cluster 2 reinstated the membrane potential dependence of dye efflux. Our data uncover a remarkable plasticity in proton interactions in LmrP, which is a consequence of the flexibility in the location of key residues that are responsible for proton/multidrug antiport.


Assuntos
Proteínas de Bactérias/química , Ácidos Carboxílicos/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cátions/metabolismo , Lactococcus lactis/química , Lactococcus lactis/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Prótons
14.
Nat Commun ; 7: 12387, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27499013

RESUMO

ATP-binding cassette transporters mediate the transbilayer movement of a vast number of substrates in or out of cells in organisms ranging from bacteria to humans. Current alternating access models for ABC exporters including the multidrug and Lipid A transporter MsbA from Escherichia coli suggest a role for nucleotide as the fundamental source of free energy. These models involve cycling between conformations with inward- and outward-facing substrate-binding sites in response to engagement and hydrolysis of ATP at the nucleotide-binding domains. Here we report that MsbA also utilizes another major energy currency in the cell by coupling substrate transport to a transmembrane electrochemical proton gradient. The dependence of ATP-dependent transport on proton coupling, and the stimulation of MsbA-ATPase by the chemical proton gradient highlight the functional integration of both forms of metabolic energy. These findings introduce ion coupling as a new parameter in the mechanism of this homodimeric ABC transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Prótons , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Transporte Biológico/efeitos dos fármacos , Cloranfenicol/farmacologia , Eletroquímica , Etídio/metabolismo , Hidrólise , Íons , Proteolipídeos/metabolismo , Especificidade por Substrato/efeitos dos fármacos
15.
J Biol Chem ; 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26631729

RESUMO

This article has been withdrawn by the authors. Some lanes in the immunoblots were used to represent different experimental conditions in Figs 3A and 5A. The transport measurements shown in Figs 3D and 5D were the same. Less relevant features were obscured in the immunoblot in Fig 7A.

16.
PLoS One ; 10(11): e0141991, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26540112

RESUMO

Multidrug transporters mediate the active extrusion of antibiotics and toxic ions from the cell. This reaction is thought to be based on a switch of the transporter between two conformational states, one in which the interior substrate binding cavity is available for substrate binding at the inside of the cell, and another in which the cavity is exposed to the outside of the cell to enable substrate release. Consistent with this model, cysteine cross-linking studies with the Major Facilitator Superfamily drug/proton antiporter LmrP from Lactococcus lactis demonstrated binding of transported benzalkonium to LmrP in its inward-facing state. The fluorescent dye Hoechst 33342 is a substrate for many multidrug transporters and is extruded by efflux pumps in microbial and mammalian cells. Surprisingly, and in contrast to other multidrug transporters, LmrP was found to actively accumulate, rather than extrude, Hoechst 33342 in lactococcal cells. Consistent with this observation, LmrP expression was associated with cellular sensitivity, rather than resistance to Hoechst 33342. Thus, we discovered a hidden "Janus" amongst LmrP substrates that is translocated in reverse direction across the membrane by binding to outward-facing LmrP followed by release from inward-facing LmrP. These findings are in agreement with distance measurements by electron paramagnetic resonance in which Hoechst 33342 binding was found to stabilize LmrP in its outward-facing conformation. Our data have important implications for the use of multidrug exporters in selective targeting of "Hoechst 33342-like" drugs to cells and tissues in which these transporters are expressed.


Assuntos
Proteínas de Bactérias/metabolismo , Benzimidazóis/farmacologia , Lactococcus lactis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antibacterianos/farmacologia , Antiporters/metabolismo , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cisteína/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Lactococcus lactis/efeitos dos fármacos
17.
Biochim Biophys Acta ; 1848(12): 3158-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26449340

RESUMO

ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account. It thus nicely complements other structural techniques, such as X-ray crystallography, that have contributed high-resolution data to the architectural understanding of ABC transporters. Here, we describe the heterologous expression of LmrA, an ABC exporter from Lactococcus lactis, in Escherichia coli. This allows for more flexible isotope labeling for nuclear magnetic resonance (NMR) studies and the easy study of LmrA's multidrug resistance phenotype. We use a combination of solid-state magic angle spinning (MAS) on the reconstituted transporter and solution NMR on its isolated nucleotide binding domain to investigate consequences of nucleotide binding to LmrA. We find that nucleotide binding affects the protein globally, but that NMR is also able to pinpoint local dynamic effects to specific residues, such as the Walker A motif's conserved lysine residue.


Assuntos
Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nucleotídeos/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Ligação Proteica
18.
Biochem Soc Trans ; 43(5): 943-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517908

RESUMO

A small number of physiologically important ATP-binding cassette (ABC) transporters are found in mitochondria. Most are half transporters of the B group forming homodimers and their topology suggests they function as exporters. The results of mutant studies point towards involvement in iron cofactor biosynthesis. In particular, ABC subfamily B member 7 (ABCB7) and its homologues in yeast and plants are required for iron-sulfur (Fe-S) cluster biosynthesis outside of the mitochondria, whereas ABCB10 is involved in haem biosynthesis. They also play a role in preventing oxidative stress. Mutations in ABCB6 and ABCB7 have been linked to human disease. Recent crystal structures of yeast Atm1 and human ABCB10 have been key to identifying substrate-binding sites and transport mechanisms. Combined with in vitro and in vivo studies, progress is being made to find the physiological substrates of the different mitochondrial ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transportadores de Cassetes de Ligação de ATP/classificação , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Cristalografia por Raios X , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Mutação , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Curr Opin Struct Biol ; 33: 76-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26282926

RESUMO

Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies.


Assuntos
Proteínas de Bactérias/fisiologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Membrana Celular , Parede Celular , Bactérias Gram-Negativas/genética , Proteínas de Membrana Transportadoras/genética , Conformação Proteica
20.
Trends Microbiol ; 23(5): 311-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25728476

RESUMO

Microorganisms encode several classes of transmembrane pumps that can expel an enormous range of toxic substances, thereby improving their fitness in harsh environments and contributing to resistance against antimicrobial agents. In Gram-negative bacteria these pumps can take the form of tripartite assemblies that actively efflux drugs and other harmful compounds across the cell envelope. We describe recent structural and functional data that have provided insights into the transport mechanisms of these intricate molecular machines.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Parede Celular/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...