Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Jt Infect ; 6(9): 413-421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804776

RESUMO

Introduction: Chronic osteomyelitis is a challenging condition in the orthopedic practice and traditionally treated using local and systemic antibiotics in a two-stage surgical procedure. With the introduction of the antimicrobial biomaterial S53P4 bioactive glass (Bonalive®), chronic osteomyelitis can be treated in a one-stage procedure. This study evaluated the mid-term clinical results of patients treated with S53P4 bioactive glass for long bone chronic osteomyelitis. Methods: In this prospective multi-center study, patients from two different university medical centers in the Netherlands were included. One-stage treatment consisted of debridement surgery, implantation of S53P4 bioactive glass, and treatment with culture-based systemic antibiotics. If required, wound closure by a plastic surgeon was performed. The primary outcome was the eradication of infection, and a secondary statistical analysis was performed on probable risk factors for treatment failure. Results: In total, 78 patients with chronic cavitary long bone osteomyelitis were included. Follow-up was at least 12 months (mean 46; standard deviation, SD, 20), and 69 patients were treated in a one-stage procedure. Overall infection eradication was 85 %, and 1-year infection-free survival was 89 %. Primary closure versus local/muscular flap coverage is the only risk factor for treatment failure. Conclusion: With 85 % eradication of infection, S53P4 bioactive glass is an effective biomaterial in the treatment of chronic osteomyelitis in a one-stage procedure. A major risk factor for treatment failure is the necessity for local/free muscle flap coverage. These results confirm earlier published data, and together with the fundamentally different antimicrobial pathways without antibiotic resistance, S53P4 bioactive glass is a recommendable biomaterial for chronic osteomyelitis treatment and might be beneficial over other biomaterials.

2.
J Orthop Res ; 39(2): 258-264, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098587

RESUMO

Chronic osteomyelitis has always been a therapeutic challenge for patient and surgeon due to the specific problems related with bone infection and bacterial biofilm eradication. Other than being the cause of infection or facilitating spread or persistence of infection, biomaterials are also becoming a tool in the treatment of infection. Certain novel biomaterials have unique and ideal properties that render them perfectly suited to combat infection and are therefore used more and more in the treatment of chronic bone infections. In case of infection treatment, there is still debate whether these properties should be focused on bone regeneration and/or their antimicrobial properties. These properties will be of even greater importance with the challenge of emerging antimicrobial resistance. This review highlights indications for use and specific material properties of some commonly used contemporary biomaterials for this indication as well as clinical experience and a literature overview.


Assuntos
Antibacterianos/administração & dosagem , Materiais Biocompatíveis/uso terapêutico , Osteomielite/cirurgia , Regeneração Óssea , Doença Crônica , Desbridamento , Humanos , Osteomielite/tratamento farmacológico , Alicerces Teciduais
3.
Front Microbiol ; 10: 1626, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31402901

RESUMO

Polymethylmethacrylate (PMMA) also referred as (acrylic) bone cement is a non-degradable biomaterial that has been used in clinical orthopedic practice for several decades. PMMA can be used in a plain formulation, but is often used in an antibiotic-loaded formulation in (primary and revision) arthroplasty and in treatment of orthopedic infections as prosthetic joint infections (PJI) and chronic osteomyelitis. In treatment of PJIs antibiotic-loaded PMMA is often used as a carrier material for local antibiotic delivery in addition to treatment with systemic antibiotics. In this case, the antibiotic-loaded PMMA is often used as a spacer or as a bead chain. Since the introduction of PMMA as an antibiotic carrier there is a tremendous amount of scientific and clinical papers published, which studied numerous different aspects of antibiotic-loaded PMMA. This paper will review the research regarding basic principles of antibiotic-loaded PMMA as mechanism of action, antibiotic-release capacities, choice of antibiotics and influences on mechanical properties of PMMA. Subsequently, concerns regarding the application of antibiotic-loaded PMMA, biofilm formation, antibiotic resistance and local or systemic toxicity will be discussed. In addition to these subjects, the role of antibiotic loaded PMMA in clinical treatment of PJIs and chronic osteomyelitis is discussed in the final part of this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA