Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6694): 458-465, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662818

RESUMO

Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Mudança Climática , Extinção Biológica
2.
Nature ; 624(7991): 309-316, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092909

RESUMO

Analysis of climate policy scenarios has become an important tool for identifying mitigation strategies, as shown in the latest Intergovernmental Panel on Climate Change Working Group III report1. The key outcomes of these scenarios differ substantially not only because of model and climate target differences but also because of different assumptions on behavioural, technological and socio-economic developments2-4. A comprehensive attribution of the spread in climate policy scenarios helps policymakers, stakeholders and scientists to cope with large uncertainties in this field. Here we attribute this spread to the underlying drivers using Sobol decomposition5, yielding the importance of each driver for scenario outcomes. As expected, the climate target explains most of the spread in greenhouse gas emissions, total and sectoral fossil fuel use, total renewable energy and total carbon capture and storage in electricity generation. Unexpectedly, model differences drive variation of most other scenario outcomes, for example, in individual renewable and carbon capture and storage technologies, and energy in demand sectors, reflecting intrinsic uncertainties about long-term developments and the range of possible mitigation strategies. Only a few scenario outcomes, such as hydrogen use, are driven by other scenario assumptions, reflecting the need for more scenario differentiation. This attribution analysis distinguishes areas of consensus as well as strong model dependency, providing a crucial step in correctly interpreting scenario results for robust decision-making.

3.
J Environ Manage ; 348: 119262, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866179

RESUMO

Protecting and increasing linear landscape elements (LLEs) in agricultural lands is regarded as a possible solution for a transition to a more biodiverse agricultural system. However, optimizing the spatial configuration of LLEs protected areas is challenging, especially given the demand for land for food production. Systematic Conservation Planning (SCP) can address this challenge, by prioritizing cost-efficient protection areas. We used a SCP approach to look at the LLEs network in the Province of Noord-Brabant in the Netherlands, identifying the possible trade-off between optimizing species conservation, costs and the monetary values of ecosystem services (ES). For this we defined two scenarios. One scenario focuses on achieving species conservation targets at the minimum cost, and the other focuses on achieving targets while maximizing the benefits provided by ES. For each scenario, we further developed two land-management options, namely land-sharing and land-sparing. For each solution, we tested their cost-effectiveness by calculating implementation costs, economic benefits provided by ES, and cost/benefit ratios. First, our scenario analysis indicates that the economic benefits provided by ES always outweigh the implementation costs. Second, it shows that including ES as co-benefits in SCP (Maximize ES Scenario) yields more cost-efficient conservation solutions. Third, both land-sharing and land-sparing are possible cost-efficient approaches to achieve conservation targets. Our results are spatially explicit and identify crucial habitat areas for the conservation of the selected species, which represent 12-20% of the current unprotected network of LLEs. Our findings showcase net economic benefit of conserving species and LLEs, thus representing an additional reason for biodiversity conservation.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício , Países Baixos , Biodiversidade
4.
Glob Environ Change ; 82: 1-14, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693692

RESUMO

Deltas play a critical role in the ambition to achieve global sustainable development given their relatively large shares in population and productive croplands, as well as their precarious low-lying position between upstream river basin development and rising seas. The large pressures on these systems risk undermining the persistence of delta societies, economies, and ecosystems. We analyse possible future development in 49 deltas around the globe under the Shared Socio-economic and Representative Concentration Pathways until 2100. Population density, urban fraction, and total and irrigated cropland fraction are three to twelve times greater in these deltas, on average, than in the rest of the world. Maximum river water discharges are projected to increase by 11-33 % and river sediment discharges are projected to decrease 26-37 % on average, depending on the scenario. Regional sea-level rise reaches almost 1.0 m by 2100 for certain deltas in the worst-case scenario, increasing to almost 2.0 m of relative rise considering land subsidence. Extreme sea levels could be much higher still-reaching over 4.0 m by 2100 for six of the 49 deltas analysed. Socio-economic conditions to support adaptation are the weakest among deltas with the greatest pressures, compounding the challenge of sustainable development. Asian and African deltas stand out as having heightened socio-economic challenges-huge population and land use pressures in most Asian deltas and the Nile delta; low capacity for adaptation in most African deltas and the Irrawaddy delta. Although, deltas in other parts of the world are not immune from these and other pressures, either. Because of unique pressures and processes operating in deltas, as in other "hotspots" such as small islands, mountains, and semi-arid areas, we recommend greater consideration and conceptualisation of environmental processes in global sustainable development agendas and in the Integrated Assessment Models used to guide global policy.

5.
J Environ Manage ; 342: 118078, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209644

RESUMO

While pesticides are essential to agriculture and food systems to sustain current production levels, they also lead to significant environmental impacts. The use of pesticides is constantly increasing globally, driven mainly by a further intensification of agriculture, despite stricter regulations and higher pesticide effectiveness. To further the understanding of future pesticide use and make informed farm-to-policy decisions, we developed Pesticide Agricultural Shared Socio-economic Pathways (Pest-AgriSSPs) in six steps. The Pest-Agri-SSPs are developed based on an extensive literature review and expert feedback approach considering significant climate and socio-economic drivers from farm to continental scale in combination with multiple actors impacting them. In literature, pesticide use is associated with farmer behaviour and practices, pest damage, technique and efficiency of pesticide application, agricultural policy and agriculture demand and production. Here, we developed PestAgri-SSPs upon this understanding of pesticide use drivers and relating them to possible agriculture development as described by the Shared Socio-economic Pathways for European agriculture and food systems (Eur-Agri-SSPs).The Pest-AgriSSPs are developed to explore European pesticide use in five scenarios representing low to high challenges to mitigation and adaptation up to 2050. The most sustainable scenario (Pest-Agri-SSP1) shows a decrease in pesticide use owing to sustainable agricultural practices, technological advances and better implementation of agricultural policies. On the contrary, the Pest-Agri-SSP3 and Pest-Agri-SSP4 show a higher increase in pesticide use resulting from higher challenges from pest pressure, resource depletion and relaxed agricultural policies. Pest-Agri-SSP2 presents a stabilised pesticide use resulting from stricter policies and slow transitions by farmers to sustainable agricultural practices. At the same time, pest pressure, climate change and food demand pose serious challenges. Pest-Agri-SSP5 shows a decrease in pesticide use for most drivers, influenced mainly by rapid technological development and sustainable agricultural practices. However, Pest-Agri-SSP5 also presents a relatively low rise in pesticide use driven by agricultural demand, production, and climate change. Our results highlight the need for a holistic approach to tackle pesticide use, considering the identified drivers and future developments. The storylines and qualitative assessment provide a platform to make quantitative assumptions for numerical modelling and evaluating policy targets.


Assuntos
Praguicidas , Agricultura/métodos , Europa (Continente) , Meio Ambiente , Fatores Socioeconômicos
6.
Ann N Y Acad Sci ; 1522(1): 98-108, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841927

RESUMO

More than 100 countries have communicated or adopted new Nationally Determined Contributions (NDCs) and net-zero target pledges. We investigate the impact on global, national, sectoral, and individual greenhouse gas emissions projections under different scenarios based on the announced NDCs and net-zero pledges using the IMAGE integrated assessment model. Our results show that while the net-zero pledges, if implemented, could be an important step forward, they are still not enough to achieve the Paris Agreement goals of well below 2°C and preferably 1.5°C by the end of the century. Still, our net-zero scenarios project significant all-sector decarbonization, in particular, electricity; however, certain sectors like industry and transport prove hard to completely abate.


Assuntos
Política Ambiental , Gases de Efeito Estufa , Mudança Climática , Meio Ambiente , Cooperação Internacional , Temperatura Alta
7.
Glob Chang Biol ; 29(9): 2384-2398, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36644803

RESUMO

The role of soil organic carbon (SOC) sequestration as a 'win-win' solution to both climate change and food insecurity receives an increasing promotion. The opportunity may be too good to be missed! Yet the tremendous complexity of the two issues at stake calls for a detailed and nuanced examination of any potential solution, no matter how appealing. Here, we critically re-examine the benefits of global SOC sequestration strategies on both climate change mitigation and food production. While estimated contributions of SOC sequestration to climate change vary, almost none take SOC saturation into account. Here, we show that including saturation in estimations decreases any potential contribution of SOC sequestration to climate change mitigation by 53%-81% towards 2100. In addition, reviewing more than 21 meta-analyses, we found that observed yield effects of increasing SOC are inconsistent, ranging from negative to neutral to positive. We find that the promise of a win-win outcome is confirmed only when specific land management practices are applied under specific conditions. Therefore, we argue that the existing knowledge base does not justify the current trend to set global agendas focusing first and foremost on SOC sequestration. Away from climate-smart soils, we need a shift towards soil-smart agriculture, adaptative and adapted to each local context, and where multiple soil functions are quantified concurrently. Only such comprehensive assessments will allow synergies for land sustainability to be maximised and agronomic requirements for food security to be fulfilled. This implies moving away from global targets for SOC in agricultural soils. SOC sequestration may occur along this pathway and contribute to climate change mitigation and should be regarded as a co-benefit.


Assuntos
Carbono , Solo , Agricultura , Sequestro de Carbono , Alimentos , Metanálise como Assunto
8.
Nature ; 612(7939): 272-276, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477132

RESUMO

Plastics show the strongest production growth of all bulk materials and are already responsible for 4.5% of global greenhouse gas emissions1,2. If no new policies are implemented, we project a doubling of global plastic demand by 2050 and more than a tripling by 2100, with an almost equivalent increase in CO2 emissions. Here we analyse three alternative CO2 emission-mitigation pathways for the global plastics sector until 2100, covering the entire life cycle from production to waste management. Our results show that, through bio-based carbon sequestration in plastic products, a combination of biomass use and landfilling can achieve negative emissions in the long term; however, this involves continued reliance on primary feedstock. A circular economy approach without an additional bioeconomy push reduces resource consumption by 30% and achieves 10% greater emission reductions before 2050 while reducing the potential of negative emissions in the long term. A circular bioeconomy approach combining recycling with higher biomass use could ultimately turn the sector into a net carbon sink, while at the same time phasing out landfilling and reducing resource consumption. Our work improves the representation of material flows and the circular economy in global energy and emission models, and provides insight into long-term dynamics in the plastics sector.


Assuntos
Dióxido de Carbono , Plásticos , Políticas
9.
Glob Change Biol Bioenergy ; 14(3): 307-321, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35875590

RESUMO

Bioenergy with carbon capture and storage (BECCS) based on purpose-grown lignocellulosic crops can provide negative CO2 emissions to mitigate climate change, but its land requirements present a threat to biodiversity. Here, we analyse the implications of crop-based BECCS for global terrestrial vertebrate species richness, considering both the land-use change (LUC) required for BECCS and the climate change prevented by BECCS. LUC impacts are determined using global-equivalent, species-area relationship-based loss factors. We find that sequestering 0.5-5 Gtonne of CO2 per year with lignocellulosic crop-based BECCS would require hundreds of Mha of land, and commit tens of terrestrial vertebrate species to extinction. Species loss per unit of negative emissions decreases with: (i) longer lifetimes of BECCS systems, (ii) less overall deployment of crop-based BECCS and (iii) optimal land allocation, that is prioritizing locations with the lowest species loss per negative emission potential, rather than minimizing overall land use or prioritizing locations with the lowest biodiversity. The consequences of prevented climate change for biodiversity are based on existing climate response relationships. Our tentative comparison shows that for crop-based BECCS considered over 30 years, LUC impacts on vertebrate species richness may outweigh the positive effects of prevented climate change. Conversely, for BECCS considered over 80 years, the positive effects of climate change mitigation on biodiversity may outweigh the negative effects of LUC. However, both effects and their interaction are highly uncertain and require further understanding, along with the analysis of additional species groups and biodiversity metrics. We conclude that factoring in biodiversity means lignocellulosic crop-based BECCS should be used early to achieve the required mitigation over longer time periods, on optimal biomass cultivation locations, and most importantly, as little as possible where conversion of natural land is involved, looking instead to sustainably grown or residual biomass-based feedstocks and alternative strategies for carbon dioxide removal.

10.
Sci Total Environ ; 836: 155530, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35489496

RESUMO

The widespread use of chemicals has led to significant water quality concerns, and their use is still increasing. Hence, there is an urgent need to understand the possible future trends in chemical emissions to water systems. This paper proposes a general framework for developing emission scenarios for chemicals to water using the Shared Socio-economic Pathways (SSPs) based on an emission-factor approach. The proposed approach involves three steps: (i) identification of the main drivers of emissions, (ii) quantification of emission factors based on analysis of publicly available data, and (iii) projection of emissions based on projected changes in the drivers and emission factors. The approach was tested in Europe for five chemical groups and on a national scale for five specific chemicals representing pharmaceuticals, pesticides, and industrial chemicals. The resulting emission scenarios show widely diverging trends of increased emissions by 240% for ibuprofen in SSP3 (regional rivalry) to a 68% decrease for diclofenac in SSP1 (sustainable development) by 2050. While emissions typically decrease in SSP1, they follow the historical trend in SSP2 (middle-of-the-road scenario) and show an increase in the regional rivalry scenario SSP3 for most selected chemicals. Overall, the framework allows understanding of future chemical emissions trends as a function of the socio-economic trends as captured in the SSPs. Our scenarios for chemical emissions can thus be used to model future aqueous emissions to support risk assessment. While the framework can be easily extended to other pharmaceuticals and pesticides, it heavily leans on the availability and quality of historical emission data and a detailed understanding of emission sources for industrial chemicals.


Assuntos
Praguicidas , Qualidade da Água , Europa (Continente) , Preparações Farmacêuticas , Fatores Socioeconômicos
12.
Nat Commun ; 12(1): 6419, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741020

RESUMO

Closing the emissions gap between Nationally Determined Contributions (NDCs) and the global emissions levels needed to achieve the Paris Agreement's climate goals will require a comprehensive package of policy measures. National and sectoral policies can help fill the gap, but success stories in one country cannot be automatically replicated in other countries. They need to be adapted to the local context. Here, we develop a new Bridge scenario based on nationally relevant, short-term measures informed by interactions with country experts. These good practice policies are rolled out globally between now and 2030 and combined with carbon pricing thereafter. We implement this scenario with an ensemble of global integrated assessment models. We show that the Bridge scenario closes two-thirds of the emissions gap between NDC and 2 °C scenarios by 2030 and enables a pathway in line with the 2 °C goal when combined with the necessary long-term changes, i.e. more comprehensive pricing measures after 2030. The Bridge scenario leads to a scale-up of renewable energy (reaching 52%-88% of global electricity supply by 2050), electrification of end-uses, efficiency improvements in energy demand sectors, and enhanced afforestation and reforestation. Our analysis suggests that early action via good-practice policies is less costly than a delay in global climate cooperation.

13.
Nat Commun ; 12(1): 2575, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958594

RESUMO

Determining international climate mitigation response strategies is a complex task. Integrated Assessment Models support this process by analysing the interplay of the most relevant factors, including socio-economic developments, climate system uncertainty, damage estimates, mitigation costs and discount rates. Here, we develop a meta-model that disentangles the uncertainties of these factors using full literature ranges. This model allows comparing insights of the cost-minimising and cost-benefit modelling communities. Typically, mitigation scenarios focus on minimum-cost pathways achieving the Paris Agreement without accounting for damages; our analysis shows doing so could double the initial carbon price. In a full cost-benefit setting, we show that the optimal temperature target does not exceed 2.5 °C when considering medium damages and low discount rates, even with high mitigation costs. With low mitigation costs, optimal temperature change drops to 1.5 °C or less. The most important factor determining the optimal temperature is the damage function, accounting for 50% of the uncertainty.

14.
Science ; 372(6540): 378-385, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888636

RESUMO

Given the increasing interest in keeping global warming below 1.5°C, a key question is what this would mean for China's emission pathway, energy restructuring, and decarbonization. By conducting a multimodel study, we find that the 1.5°C-consistent goal would require China to reduce its carbon emissions and energy consumption by more than 90 and 39%, respectively, compared with the "no policy" case. Negative emission technologies play an important role in achieving near-zero emissions, with captured carbon accounting on average for 20% of the total reductions in 2050. Our multimodel comparisons reveal large differences in necessary emission reductions across sectors, whereas what is consistent is that the power sector is required to achieve full decarbonization by 2050. The cross-model averages indicate that China's accumulated policy costs may amount to 2.8 to 5.7% of its gross domestic product by 2050, given the 1.5°C warming limit.

15.
Nat Commun ; 12(1): 2140, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837206

RESUMO

Over 100 countries have set or are considering net-zero emissions or neutrality targets. However, most of the information on emissions neutrality (such as timing) is provided for the global level. Here, we look at national-level neutrality-years based on globally cost-effective 1.5 °C and 2 °C scenarios from integrated assessment models. These results indicate that domestic net zero greenhouse gas and CO2 emissions in Brazil and the USA are reached a decade earlier than the global average, and in India and Indonesia later than global average. These results depend on choices like the accounting of land-use emissions. The results also show that carbon storage and afforestation capacity, income, share of non-CO2 emissions, and transport sector emissions affect the variance in projected phase-out years across countries. We further compare these results to an alternative approach, using equity-based rules to establish target years. These results can inform policymakers on net-zero targets.

16.
Clim Change ; 163(3): 1569-1586, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364667

RESUMO

In the twenty-first century, modern bioenergy could become one of the largest sources of energy, partially replacing fossil fuels and contributing to climate change mitigation. Agricultural and forestry biomass residues form an inexpensive bioenergy feedstock with low greenhouse gas (GHG) emissions, if harvested sustainably. We analysed quantities of biomass residues supplied for energy and their sensitivities in harmonised bioenergy demand scenarios across eight integrated assessment models (IAMs) and compared them with literature-estimated residue availability. IAM results vary substantially, at both global and regional scales, but suggest that residues could meet 7-50% of bioenergy demand towards 2050, and 2-30% towards 2100, in a scenario with 300 EJ/year of exogenous bioenergy demand towards 2100. When considering mean literature-estimated availability, residues could provide around 55 EJ/year by 2050. Inter-model differences primarily arise from model structure, assumptions, and the representation of agriculture and forestry. Despite these differences, drivers of residues supplied and underlying cost dynamics are largely similar across models. Higher bioenergy demand or biomass prices increase the quantity of residues supplied for energy, though their effects level off as residues become depleted. GHG emission pricing and land protection can increase the costs of using land for lignocellulosic bioenergy crop cultivation, which increases residue use at the expense of lignocellulosic bioenergy crops. In most IAMs and scenarios, supplied residues in 2050 are within literature-estimated residue availability, but outliers and sustainability concerns warrant further exploration. We conclude that residues can cost-competitively play an important role in the twenty-first century bioenergy supply, though uncertainties remain concerning (regional) forestry and agricultural production and resulting residue supply potentials.

17.
Nat Commun ; 11(1): 2096, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350258

RESUMO

Many countries have implemented national climate policies to accomplish pledged Nationally Determined Contributions and to contribute to the temperature objectives of the Paris Agreement on climate change. In 2023, the global stocktake will assess the combined effort of countries. Here, based on a public policy database and a multi-model scenario analysis, we show that implementation of current policies leaves a median emission gap of 22.4 to 28.2 GtCO2eq by 2030 with the optimal pathways to implement the well below 2 °C and 1.5 °C Paris goals. If Nationally Determined Contributions would be fully implemented, this gap would be reduced by a third. Interestingly, the countries evaluated were found to not achieve their pledged contributions with implemented policies (implementation gap), or to have an ambition gap with optimal pathways towards well below 2 °C. This shows that all countries would need to accelerate the implementation of policies for renewable technologies, while efficiency improvements are especially important in emerging countries and fossil-fuel-dependent countries.

18.
Nat Commun ; 11(1): 947, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075965

RESUMO

Seasonal mismatches between electricity supply and demand is increasing due to expanded use of wind, solar and hydropower resources, which in turn raises the interest on low-cost seasonal energy storage options. Seasonal pumped hydropower storage (SPHS) can provide long-term energy storage at a relatively low-cost and co-benefits in the form of freshwater storage capacity. We present the first estimate of the global assessment of SPHS potential, using a novel plant-siting methodology based on high-resolution topographical and hydrological data. Here we show that SPHS costs vary from 0.007 to 0.2 US$ m-1 of water stored, 1.8 to 50 US$ MWh-1 of energy stored and 370 to 600 US$ kW-1 of installed power generation. This potential is unevenly distributed with mountainous regions demonstrating significantly more potential. The estimated world energy storage capacity below a cost of 50 US$ MWh-1 is 17.3 PWh, approximately 79% of the world electricity consumption in 2017.

19.
Proc Natl Acad Sci U S A ; 117(5): 2354-2365, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964839

RESUMO

Safely achieving the goals of the Paris Climate Agreement requires a worldwide transformation to carbon-neutral societies within the next 30 y. Accelerated technological progress and policy implementations are required to deliver emissions reductions at rates sufficiently fast to avoid crossing dangerous tipping points in the Earth's climate system. Here, we discuss and evaluate the potential of social tipping interventions (STIs) that can activate contagious processes of rapidly spreading technologies, behaviors, social norms, and structural reorganization within their functional domains that we refer to as social tipping elements (STEs). STEs are subdomains of the planetary socioeconomic system where the required disruptive change may take place and lead to a sufficiently fast reduction in anthropogenic greenhouse gas emissions. The results are based on online expert elicitation, a subsequent expert workshop, and a literature review. The STIs that could trigger the tipping of STE subsystems include 1) removing fossil-fuel subsidies and incentivizing decentralized energy generation (STE1, energy production and storage systems), 2) building carbon-neutral cities (STE2, human settlements), 3) divesting from assets linked to fossil fuels (STE3, financial markets), 4) revealing the moral implications of fossil fuels (STE4, norms and value systems), 5) strengthening climate education and engagement (STE5, education system), and 6) disclosing information on greenhouse gas emissions (STE6, information feedbacks). Our research reveals important areas of focus for larger-scale empirical and modeling efforts to better understand the potentials of harnessing social tipping dynamics for climate change mitigation.

20.
One Earth ; 3(2): 166-172, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34173531

RESUMO

To halt climate change this century, we must reduce carbon dioxide (CO2) emissions from human activities to net zero. Any emission sources, such as in the energy or land-use sectors, must be balanced by natural or technological carbon sinks that facilitate CO2 removal (CDR) from the atmosphere. Projections of demand for large-scale CDR are based on an integrated scenario framework for emission scenarios composed of emission profiles as well as alternative socio-economic development trends and social values consistent with them. The framework, however, was developed years before systematic reviews of CDR entered the literature. This primer provides an overview of the purposes of scenarios in climate-change research and how they are used. It also introduces the integrated scenario framework and why it came about. CDR studies using the scenario framework, as well as its limitations, are discussed. Possible future developments for the scenario framework are highlighted, especially in relation to CDR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...