Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 218(1-2): 113-24, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11330825

RESUMO

Cardiac hypertrophy is a compensatory response of myocardial tissue upon increased mechanical load. Of the mechanical factors, stretch is rapidly followed by hypertrophic responses. We tried to elucidate the role of angiotensin II (AII), endothelin-1 (ET-1) and transforming growth factor-beta (TGF-beta) as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. We collected conditioned medium (CM) from stretched cardiomyocytes and from other stretched cardiac cells, such as cardiac fibroblasts, endothelial cells and vascular smooth muscle cells (VSMCs). These CMs were administered to stationary cardiomyocytes with or without an AII type 1 (AT1) receptor antagonist (losartan), an ET-1 type A (ET(A)) receptor antagonist (BQ610), or anti-TGF-beta antibodies. By measuring the mRNA levels of the proto-oncogene c-fos and the hypertrophy marker gene atrial natriuretic peptide (ANP), the molecular phenotype of the CM-treated stationary cardiomyocytes was characterized. Our results showed that c-fos and ANP expression in stationary cardiomyocytes was increased by All release from cardiomyocytes that had been stretched for 60 min. Stretched cardiomyocytes, cardiac fibroblasts and endothelial cells released ET-1 which led to increased c-fos and ANP expression in stationary cardiomyocytes. ET-1 released by stretched VSMCs, and TGF-beta released by stretched cardiac fibroblasts and endothelial cells, appeared to be paracrine mediators of ANP expression in stationary cardiomyocytes. These results indicate that AII, ET-1 and TGF-beta (released by cardiac and vascular cell types) act as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Therefore, it is likely that in stretched myocardium the cardiomyocytes, cardiac fibroblasts, endothelial cells and VSMCs take part in intercellular interactions contributing to cardiomyocyte hypertrophy.


Assuntos
Angiotensina II/farmacologia , Cardiomegalia/etiologia , Endotelina-1/farmacologia , Miocárdio/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Vasoconstritores/farmacologia , Angiotensina II/antagonistas & inibidores , Animais , Cardiomegalia/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados/química , Endotelina-1/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Genes fos/efeitos dos fármacos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Estresse Mecânico
2.
Arch Biochem Biophys ; 381(1): 67-73, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11019821

RESUMO

Passive stretch of the heart has a direct effect on cardiomyocytes and other cell types including cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells (VSMCs). Cardiomyocytes are targets for the action of peptide growth factors found in myocardium, suggesting an autocrine or paracrine model of the hypertrophic process. In this study we examined stretch-dependent cellular communication between cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs. Stationary cardiomyocytes were incubated with stretch-conditioned medium (CM0-CM60) derived from stretched (for 0-60 min) cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs. The expression levels of protooncogenes (as c-fos, c-jun, and fra-1) were measured, and as an indication of a hypertrophic response the expression of atrial natriuretic peptide (ANP) was measured. Stationary cardiomyocytes that have been incubated for 30 min with CM from stretched (for 0-60 min) cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs showed distinct gene expression patterns that were time-dependent and cell-type specific. In stationary cardiomyocytes, CM derived from stretched cardiomyocytes caused decreased c-fos and fra-1 expression by 37 and 20%, respectively (CM30), elevated c-jun expression by 20% (CM45-CM60), and increased ANP expression by 106% (CM45). CM derived from stretched cardiac fibroblasts caused increased c-fos expression by 41% (CM60), no significant changes in c-jun expression, and increased fra-1 and ANP expression by 39 and 20%, respectively (CM45). CM derived from stretched VSMCs induced an initial decrease in c-fos expression followed by an increase of 13% (CM45) and induced increased c-jun, fra-1, and ANP expression by 39, 24, and 22%, respectively. CM15-CM60 derived from stretched endothelial cells caused decreased c-fos, c-jun and fra-1 expression by 20, 25, and 25%, respectively, and increased ANP expression by 18%. Our data indicate that gene expression of cardiomyocytes in stretched myocardium is regulated by mediators released by cardiomyocytes, cardiac fibroblasts, endothelial cells, and VSMCs. This observation emphasizes the involvement of nonmyocyte cells in the early stages of cardiomyocyte hypertrophy caused by cardiac stretch.


Assuntos
Endotélio Vascular/fisiologia , Expressão Gênica , Coração/fisiologia , Músculo Liso Vascular/fisiologia , Miocárdio/citologia , Miocárdio/metabolismo , Animais , Cardiomegalia/etiologia , Células Cultivadas , Meios de Cultivo Condicionados , Endotélio Vascular/citologia , Fibroblastos/fisiologia , Genes fos , Genes jun , Músculo Liso Vascular/citologia , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...