Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11244, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755213

RESUMO

We evaluated the prognostic value of hypoalbuminemia in context of various biomarkers at baseline, including clinical, genomic, transcriptomic, and blood-based markers, in patients with metastatic melanoma treated with anti-PD-1 monotherapy or anti-PD-1/anti-CTLA-4 combination therapy (n = 178). An independent validation cohort (n = 79) was used to validate the performance of hypoalbuminemia compared to serum LDH (lactate dehydrogenase) levels. Pre-treatment hypoalbuminemia emerged as the strongest predictor of poor outcome for both OS (HR = 4.01, 95% CI 2.10-7.67, Cox P = 2.63e-05) and PFS (HR = 3.72, 95% CI 2.06-6.73, Cox P = 1.38e-05) in univariate analysis. In multivariate analysis, the association of hypoalbuminemia with PFS was independent of serum LDH, IFN-γ signature expression, TMB, age, ECOG PS, treatment line, treatment type (combination or monotherapy), brain and liver metastasis (HR = 2.76, 95% CI 1.24-6.13, Cox P = 0.0131). Our validation cohort confirmed the prognostic power of hypoalbuminemia for OS (HR = 1.98, 95% CI 1.16-3.38; Cox P = 0.0127) and was complementary to serum LDH in analyses for both OS (LDH-adjusted HR = 2.12, 95% CI 1.2-3.72, Cox P = 0.00925) and PFS (LDH-adjusted HR = 1.91, 95% CI 1.08-3.38, Cox P = 0.0261). In conclusion, pretreatment hypoalbuminemia was a powerful predictor of outcome in ICI in melanoma and showed remarkable complementarity to previously established biomarkers, including high LDH.


Assuntos
Biomarcadores Tumorais , Hipoalbuminemia , Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Adulto , Metástase Neoplásica , L-Lactato Desidrogenase/sangue , L-Lactato Desidrogenase/metabolismo , Idoso de 80 Anos ou mais , Multiômica
2.
Clin Cancer Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630551

RESUMO

PURPOSE: To evaluate efficacy of pembrolizumab across multiple cancer types harboring different levels of Whole-Genome Sequencing (WGS)-based tumor mutational load (TML; total of non-synonymous mutations across the genome) in patients included in the Drug Rediscovery Protocol (NCT02925234). PATIENTS AND METHODS: Patients with solid, treatment-refractory, microsatellite-stable tumors were enrolled in cohort A: breast cancer TML 140-290, cohort B: tumor-agnostic cohort TML 140-290, and cohort C: tumor-agnostic cohort TML >290. Patients received pembrolizumab 200 mg every three weeks. Primary endpoint was clinical benefit (CB: objective response or stable disease (SD) ≥16 weeks). Pre-treatment tumor biopsies were obtained for WGS and RNA-sequencing. RESULTS: Seventy-two evaluable patients with 26 different histotypes were enrolled. CB rate was 13% in cohort A (3/24 with partial response (PR)), 21% in cohort B (3/24 with SD, 2/24 with PR), and 42% in cohort C (4/24 with SD, 6/24 with PR). In cohort C, neoantigen burden estimates and expression of inflammation and innate immune biomarkers were significantly associated with CB. Similar associations were not identified in cohort A and B. In cohort A, CB was significantly associated with mutations in the chromatin remodeling gene PBRM1, while in cohort B, CB was significantly associated with expression of MICA/MICB and butyrophilins. CB and clonal TML were not significantly associated. CONCLUSION: While in cohort A pembrolizumab lacked activity, cohort B and cohort C met the study's primary endpoint. Further research is warranted to refine selection of patients with tumors harboring lower TMLs and may benefit from a focus on innate immunity.

3.
Cell ; 187(9): 2324-2335.e19, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38599211

RESUMO

Microbial communities are resident to multiple niches of the human body and are important modulators of the host immune system and responses to anticancer therapies. Recent studies have shown that complex microbial communities are present within primary tumors. To investigate the presence and relevance of the microbiome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptomics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes, enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies.


Assuntos
Microbiota , Metástase Neoplásica , Neoplasias , Humanos , Neoplasias/microbiologia , Neoplasias/patologia , Metagenômica/métodos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neutrófilos/imunologia , Microambiente Tumoral , Bactérias/genética , Bactérias/classificação
5.
Clin Cancer Res ; 30(7): 1307-1318, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300729

RESUMO

PURPOSE: The clinical value of STK11, KEAP1, and EGFR alterations for guiding immune checkpoint blockade (ICB) therapy in non-small cell lung cancer (NSCLC) remains controversial, as some patients with these proposed resistance biomarkers show durable ICB responses. More specific combinatorial biomarker approaches are urgently needed for this disease. EXPERIMENTAL DESIGN: To develop a combinatorial biomarker strategy with increased specificity for ICB unresponsiveness in NSCLC, we performed a comprehensive analysis of 254 patients with NSCLC treated with ligand programmed death-ligand 1 (PD-L1) blockade monotherapy, including a discovery cohort of 75 patients subjected to whole-genome sequencing (WGS), and an independent validation cohort of 169 patients subjected to tumor-normal large panel sequencing. The specificity of STK11/KEAP1/EGFR alterations for ICB unresponsiveness was assessed in the contexts of a low (<10 muts/Mb) or high (≥10 muts/Mb) tumor mutational burden (TMB). RESULTS: In low TMB cases, STK11/KEAP1/EGFR alterations were highly specific biomarkers for ICB resistance, with 0/15 (0.0%) and 1/34 (2.9%) biomarker-positive patients showing treatment benefit in the discovery and validation cohorts, respectively. This contrasted with high TMB cases, where 11/13 (85%) and 15/34 (44%) patients with at least one STK11/KEAP1/EGFR alteration showed durable treatment benefit in the discovery and validation cohorts, respectively. These findings were supported by analyses of progression-free survival and overall survival. CONCLUSIONS: The unexpected ICB responses in patients carrying resistance biomarkers in STK11, KEAP1, and EGFR were almost exclusively observed in patients with a high TMB. Considering these alterations in context, the TMB offered a highly specific combinatorial biomarker strategy for limiting overtreatment in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Ligantes , Mutação , Fator 2 Relacionado a NF-E2/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/uso terapêutico , Imunoterapia , Genômica , Receptores ErbB/genética , Antígeno B7-H1/genética
6.
Nat Med ; 30(2): 519-530, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191613

RESUMO

Gastric and gastroesophageal junction (G/GEJ) cancers carry a poor prognosis, and despite recent advancements, most patients die of their disease. Although immune checkpoint blockade became part of the standard-of-care for patients with metastatic G/GEJ cancers, its efficacy and impact on the tumor microenvironment (TME) in early disease remain largely unknown. We hypothesized higher efficacy of neoadjuvant immunotherapy plus chemotherapy in patients with nonmetastatic G/GEJ cancer. In the phase 2 PANDA trial, patients with previously untreated resectable G/GEJ tumors (n = 21) received neoadjuvant treatment with one cycle of atezolizumab monotherapy followed by four cycles of atezolizumab plus docetaxel, oxaliplatin and capecitabine. Treatment was well tolerated. There were grade 3 immune-related adverse events in two of 20 patients (10%) but no grade 4 or 5 immune-related adverse events, and all patients underwent resection without treatment-related delays, meeting the primary endpoint of safety and feasibility. Tissue was obtained at multiple time points, allowing analysis of the effects of single-agent anti-programmed cell death ligand 1 (PD-L1) and the subsequent combination with chemotherapy on the TME. Twenty of 21 patients underwent surgery and were evaluable for secondary pathologic response and survival endpoints, and 19 were evaluable for exploratory translational analyses. A major pathologic response (≤10% residual viable tumor) was observed in 14 of 20 (70%, 95% confidence interval 46-88%) patients, including 9 (45%, 95% confidence interval 23-68%) pathologic complete responses. At a median follow-up of 47 months, 13 of 14 responders were alive and disease-free, and five of six nonresponders had died as a result of recurrence. Notably, baseline anti-programmed cell death protein 1 (PD-1)+CD8+ T cell infiltration was significantly higher in responders versus nonresponders, and comparison of TME alterations following anti-PD-L1 monotherapy versus the subsequent combination with chemotherapy showed an increased immune activation on single-agent PD-1/L1 axis blockade. On the basis of these data, monotherapy anti-PD-L1 before its combination with chemotherapy warrants further exploration and validation in a larger cohort of patients with nonmetastatic G/GEJ cancer. ClinicalTrials.gov registration: NCT03448835 .


Assuntos
Adenocarcinoma , Anticorpos Monoclonais Humanizados , Neoplasias Esofágicas , Neoplasias Gástricas , Humanos , Terapia Neoadjuvante , Receptor de Morte Celular Programada 1 , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Junção Esofagogástrica/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Microambiente Tumoral
8.
Nat Med ; 29(3): 605-614, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864254

RESUMO

Genomics has greatly improved how patients with cancer are being treated; however, clinical-grade genomic biomarkers for chemotherapies are currently lacking. Using whole-genome analysis of 37 patients with metastatic colorectal cancer (mCRC) treated with the chemotherapy trifluridine/tipiracil (FTD/TPI), we identified KRAS codon G12 (KRASG12) mutations as a potential biomarker of resistance. Next, we collected real-world data of 960 patients with mCRC receiving FTD/TPI and validated that KRASG12 mutations were significantly associated with poor survival, also in analyses restricted to the RAS/RAF mutant subgroup. We next analyzed the data of the global, double-blind, placebo-controlled, phase 3 RECOURSE trial (n = 800 patients) and found that KRASG12 mutations (n = 279) were predictive biomarkers for reduced overall survival (OS) benefit of FTD/TPI versus placebo (unadjusted interaction P = 0.0031, adjusted interaction P = 0.015). For patients with KRASG12 mutations in the RECOURSE trial, OS was not prolonged with FTD/TPI versus placebo (n = 279; hazard ratio (HR) = 0.97; 95% confidence interval (CI) = 0.73-1.20; P = 0.85). In contrast, patients with KRASG13 mutant tumors showed significantly improved OS with FTD/TPI versus placebo (n = 60; HR = 0.29; 95% CI = 0.15-0.55; P < 0.001). In isogenic cell lines and patient-derived organoids, KRASG12 mutations were associated with increased resistance to FTD-based genotoxicity. In conclusion, these data show that KRASG12 mutations are biomarkers for reduced OS benefit of FTD/TPI treatment, with potential implications for approximately 28% of patients with mCRC under consideration for treatment with FTD/TPI. Furthermore, our data suggest that genomics-based precision medicine may be possible for a subset of chemotherapies.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Demência Frontotemporal , Neoplasias Retais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Uracila/uso terapêutico , Trifluridina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Pirrolidinas/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias Retais/tratamento farmacológico , Combinação de Medicamentos , Mutação/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
9.
Nat Rev Clin Oncol ; 20(5): 305-317, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914745

RESUMO

Genomics-based precision medicine has revolutionized oncology but also has inherent limitations. Functional precision oncology is emerging as a complementary approach that aims to bridge the gap between genotype and phenotype by modelling individual tumours in vitro. These patient-derived ex vivo models largely preserve several tumour characteristics that are not captured by genomics approaches and enable the functional dissection of tumour vulnerabilities in a personalized manner. In this Review, we discuss several examples of personalized functional assays involving tumour organoids, spheroids and explants and their potential to predict treatment responses and drug-induced toxicities in individual patients. These developments have opened exciting new avenues for precision oncology, with the potential for successful clinical applications in contexts in which genomic data alone are not informative. To implement these assays into clinical practice, we outline four key barriers that need to be overcome: assay success rates, turnaround times, the need for standardized conditions and the definition of in vitro responders. Furthermore, we discuss novel technological advances such as microfluidics that might reduce sample requirements, assay times and labour intensity and thereby enable functional precision oncology to be implemented in routine clinical practice.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Medicina de Precisão , Oncologia , Fenótipo , Genótipo
10.
Nature ; 613(7945): 743-750, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631610

RESUMO

DNA mismatch repair-deficient (MMR-d) cancers present an abundance of neoantigens that is thought to explain their exceptional responsiveness to immune checkpoint blockade (ICB)1,2. Here, in contrast to other cancer types3-5, we observed that 20 out of 21 (95%) MMR-d cancers with genomic inactivation of ß2-microglobulin (encoded by B2M) retained responsiveness to ICB, suggesting the involvement of immune effector cells other than CD8+ T cells in this context. We next identified a strong association between B2M inactivation and increased infiltration by γδ T cells in MMR-d cancers. These γδ T cells mainly comprised the Vδ1 and Vδ3 subsets, and expressed high levels of PD-1, other activation markers, including cytotoxic molecules, and a broad repertoire of killer-cell immunoglobulin-like receptors. In vitro, PD-1+ γδ T cells that were isolated from MMR-d colon cancers exhibited enhanced reactivity to human leukocyte antigen (HLA)-class-I-negative MMR-d colon cancer cell lines and B2M-knockout patient-derived tumour organoids compared with antigen-presentation-proficient cells. By comparing paired tumour samples from patients with MMR-d colon cancer that were obtained before and after dual PD-1 and CTLA-4 blockade, we found that immune checkpoint blockade substantially increased the frequency of γδ T cells in B2M-deficient cancers. Taken together, these data indicate that γδ T cells contribute to the response to immune checkpoint blockade in patients with HLA-class-I-negative MMR-d colon cancers, and underline the potential of γδ T cells in cancer immunotherapy.


Assuntos
Neoplasias do Colo , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I , Inibidores de Checkpoint Imunológico , Imunoterapia , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Microglobulina beta-2/deficiência , Microglobulina beta-2/genética , Reparo de Erro de Pareamento de DNA/genética , Receptores KIR , Linhagem Celular Tumoral , Organoides , Apresentação de Antígeno , Genes MHC Classe I/genética
11.
Clin Cancer Res ; 28(7): 1402-1411, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046062

RESUMO

PURPOSE: Patients with rare cancers (incidence less than 6 cases per 100,000 persons per year) commonly have less treatment opportunities and are understudied at the level of genomic targets. We hypothesized that patients with rare cancer benefit from approved anticancer drugs outside their label similar to common cancers. EXPERIMENTAL DESIGN: In the Drug Rediscovery Protocol (DRUP), patients with therapy-refractory metastatic cancers harboring an actionable molecular profile are matched to FDA/European Medicines Agency-approved targeted therapy or immunotherapy. Patients are enrolled in parallel cohorts based on the histologic tumor type, molecular profile and study drug. Primary endpoint is clinical benefit (complete response, partial response, stable disease ≥ 16 weeks). RESULTS: Of 1,145 submitted cases, 500 patients, including 164 patients with rare cancers, started one of the 25 available drugs and were evaluable for treatment outcome. The overall clinical benefit rate was 33% in both the rare cancer and nonrare cancer subgroup. Inactivating alterations of CDKN2A and activating BRAF aberrations were overrepresented in patients with rare cancer compared with nonrare cancers, resulting in more matches to CDK4/6 inhibitors (14% vs. 4%; P ≤ 0.001) or BRAF inhibitors (9% vs. 1%; P ≤ 0.001). Patients with rare cancer treated with small-molecule inhibitors targeting BRAF experienced higher rates of clinical benefit (75%) than the nonrare cancer subgroup. CONCLUSIONS: Comprehensive molecular testing in patients with rare cancers may identify treatment opportunities and clinical benefit similar to patients with common cancers. Our findings highlight the importance of access to broad molecular diagnostics to ensure equal treatment opportunities for all patients with cancer.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas B-raf , Genômica/métodos , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Proteínas Proto-Oncogênicas B-raf/genética
12.
Nat Med ; 27(9): 1553-1563, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373653

RESUMO

Genomic profiling is critical for the identification of treatment options for patients with metastatic cancer, but it remains unclear how frequently this procedure should be repeated during the course of the disease. To address this, we analyzed whole-genome sequencing (WGS) data of 250 biopsy pairs, longitudinally collected over the treatment course of 231 adult patients with a representative variety of metastatic solid malignancies. Within the biopsy interval (median, 6.4 months), patients received one or multiple lines of (mostly) standard-of-care (SOC) treatments, with all major treatment modalities being broadly represented. SOC biomarkers and biomarkers for clinical trial enrollment could be identified in 23% and 72% of biopsies, respectively. For SOC genomic biomarkers, we observed full concordance between the first and the second biopsy in 99% of pairs. Of the 219 biomarkers for clinical trial enrollment that were identified in the first biopsies, we recovered 94% in the follow-up biopsies. Furthermore, a second WGS analysis did not identify additional biomarkers for clinical trial enrollment in 91% of patients. More-frequent genomic evolution was observed when considering specific genes targeted by small-molecule inhibitors or hormonal therapies (21% and 22% of cases, respectively). Together, our data demonstrate that there is limited evolution of the actionable genome of treated metastases. A single WGS analysis of a metastatic biopsy is generally sufficient to identify SOC genomic biomarkers and to identify investigational treatment opportunities.


Assuntos
Biomarcadores Tumorais/genética , Evolução Molecular , Proteínas de Neoplasias/genética , Neoplasias/genética , Adulto , Biópsia , Feminino , Genoma Humano/genética , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Metástase Neoplásica , Neoplasias/classificação , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Medicina de Precisão , Bibliotecas de Moléculas Pequenas , Sequenciamento Completo do Genoma/métodos
13.
Front Endocrinol (Lausanne) ; 12: 627819, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776923

RESUMO

Gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) is a poorly understood disease with limited treatment options. A better understanding of this disease would greatly benefit from the availability of representative preclinical models. Here, we present the potential of tumor organoids, three-dimensional cultures of tumor cells, to model GEP-NEC. We established three GEP-NEC organoid lines, originating from the stomach and colon, and characterized them using DNA sequencing and immunohistochemistry. Organoids largely resembled the original tumor in expression of synaptophysin, chromogranin and Ki-67. Models derived from tumors containing both neuroendocrine and non-neuroendocrine components were at risk of overgrowth by non-neuroendocrine tumor cells. Organoids were derived from patients treated with cisplatin and everolimus and for the three patients studied, organoid chemosensitivity paralleled clinical response. We demonstrate the feasibility of establishing NEC organoid lines and their potential applications. Organoid culture has the potential to greatly extend the repertoire of preclinical models for GEP-NEC, supporting drug development for this difficult-to-treat tumor type.


Assuntos
Neoplasias Intestinais/patologia , Modelos Biológicos , Tumores Neuroendócrinos/patologia , Organoides/patologia , Neoplasias Pancreáticas/patologia , Neoplasias Gástricas/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Everolimo/farmacologia , Everolimo/uso terapêutico , Dosagem de Genes , Humanos , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/genética , Antígeno Ki-67/metabolismo , Mutação/genética , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Sequenciamento do Exoma
15.
Nat Med ; 26(5): 665-671, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405058

RESUMO

The current COVID-19 pandemic challenges oncologists to profoundly re-organize oncological care in order to dramatically reduce hospital visits and admissions and therapy-induced immune-related complications without compromising cancer outcomes. Since COVID-19 is a novel disease, guidance by scientific evidence is often unavailable, and impactful decisions are inevitably made on the basis of expert opinions. Here we report how the seven comprehensive cancer centers of Cancer Core Europe have organized their healthcare systems at an unprecedented scale and pace to make their operations 'pandemic proof'. We identify and discuss many commonalities, but also important local differences, and pinpoint critical research priorities to enable evidence-based remodeling of cancer care during the COVID-19 pandemic. Also, we discuss how the current situation offers a unique window of opportunity for assessing the effects of de-escalating anticancer regimens, which may fast-forward the development of more-refined and less-toxic treatments. By sharing our joint experiences, we offer a roadmap for proceeding and aim to mobilize the global research community to generate the data that are critically needed to offer the best possible care to patients.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Neoplasias , Pneumonia Viral/epidemiologia , Assistência Ambulatorial/estatística & dados numéricos , COVID-19 , Infecções por Coronavirus/complicações , Infecções por Coronavirus/prevenção & controle , Atenção à Saúde , Humanos , Neoplasias/complicações , Neoplasias/terapia , Pandemias/prevenção & controle , Pneumonia Viral/complicações , Pneumonia Viral/prevenção & controle , SARS-CoV-2
16.
Sci Transl Med ; 11(513)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597751

RESUMO

There is a clear and unmet clinical need for biomarkers to predict responsiveness to chemotherapy for cancer. We developed an in vitro test based on patient-derived tumor organoids (PDOs) from metastatic lesions to identify nonresponders to standard-of-care chemotherapy in colorectal cancer (CRC). In a prospective clinical study, we show the feasibility of generating and testing PDOs for evaluation of sensitivity to chemotherapy. Our PDO test predicted response of the biopsied lesion in more than 80% of patients treated with irinotecan-based therapies without misclassifying patients who would have benefited from treatment. This correlation was specific to irinotecan-based chemotherapy, however, and the PDOs failed to predict outcome for treatment with 5-fluorouracil plus oxaliplatin. Our data suggest that PDOs could be used to prevent cancer patients from undergoing ineffective irinotecan-based chemotherapy.


Assuntos
Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Organoides/citologia , Antineoplásicos/uso terapêutico , Capecitabina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Feminino , Fluoruracila/uso terapêutico , Humanos , Irinotecano/uso terapêutico , Oxaliplatina/uso terapêutico , Estudos Prospectivos , Resultado do Tratamento
18.
Cell ; 177(6): 1375-1383, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150618

RESUMO

Recent studies of the tumor genome seek to identify cancer pathways as groups of genes in which mutations are epistatic with one another or, specifically, "mutually exclusive." Here, we show that most mutations are mutually exclusive not due to pathway structure but to interactions with disease subtype and tumor mutation load. In particular, many cancer driver genes are mutated preferentially in tumors with few mutations overall, causing mutations in these cancer genes to appear mutually exclusive with numerous others. Researchers should view current epistasis maps with caution until we better understand the multiple cause-and-effect relationships among factors such as tumor subtype, positive selection for mutations, and gross tumor characteristics including mutational signatures and load.


Assuntos
Epistasia Genética/genética , Genes Neoplásicos/genética , Neoplasias/genética , Algoritmos , Biologia Computacional/métodos , Epistasia Genética/fisiologia , Genes Neoplásicos/fisiologia , Humanos , Modelos Genéticos , Mutação/genética , Oncogenes/genética
19.
Cell ; 174(6): 1586-1598.e12, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100188

RESUMO

Cancer immunotherapies have shown substantial clinical activity for a subset of patients with epithelial cancers. Still, technological platforms to study cancer T-cell interactions for individual patients and understand determinants of responsiveness are presently lacking. Here, we establish and validate a platform to induce and analyze tumor-specific T cell responses to epithelial cancers in a personalized manner. We demonstrate that co-cultures of autologous tumor organoids and peripheral blood lymphocytes can be used to enrich tumor-reactive T cells from peripheral blood of patients with mismatch repair-deficient colorectal cancer and non-small-cell lung cancer. Furthermore, we demonstrate that these T cells can be used to assess the efficiency of killing of matched tumor organoids. This platform provides an unbiased strategy for the isolation of tumor-reactive T cells and provides a means by which to assess the sensitivity of tumor cells to T cell-mediated attack at the level of the individual patient.


Assuntos
Leucócitos Mononucleares/citologia , Linfócitos T/imunologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células , Técnicas de Cocultura , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Técnicas In Vitro , Interferon gama/farmacologia , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Células Tumorais Cultivadas
20.
Cell ; 171(6): 1272-1283.e15, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29107334

RESUMO

MHC-I molecules expose the intracellular protein content on the cell surface, allowing T cells to detect foreign or mutated peptides. The combination of six MHC-I alleles each individual carries defines the sub-peptidome that can be effectively presented. We applied this concept to human cancer, hypothesizing that oncogenic mutations could arise in gaps in personal MHC-I presentation. To validate this hypothesis, we developed and applied a residue-centric patient presentation score to 9,176 cancer patients across 1,018 recurrent oncogenic mutations. We found that patient MHC-I genotype-based scores could predict which mutations were more likely to emerge in their tumor. Accordingly, poor presentation of a mutation across patients was correlated with higher frequency among tumors. These results support that MHC-I genotype-restricted immunoediting during tumor formation shapes the landscape of oncogenic mutations observed in clinically diagnosed tumors and paves the way for predicting personal cancer susceptibilities from knowledge of MHC-I genotype.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Mutação , Neoplasias/imunologia , Linhagem Celular Tumoral , Simulação por Computador , Feminino , Células HeLa , Humanos , Masculino , Monitorização Imunológica , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...