Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 6(20): 7352-7366, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725403

RESUMO

The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site-years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra- and interspecific trait variation on ecosystem functioning.

2.
Oecologia ; 168(1): 23-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21833645

RESUMO

Few data are available describing the photosynthetic parameters of the leaves of tropical montane cloud forests (TMCF). Here, we present a study of photosynthetic leaf traits (V(cmax) and J(max)), foliar dark respiration (R(d)), foliar nitrogen (N) and phosphorus (P), and leaf mass per area (LMA) throughout the canopy for five different TMCF species at 3025 m a.s.l. in Andean Peru. All leaf traits showed a significant relationship with canopy height when expressed on an area basis, and V(cmax-area) and J(max-area) almost halved when descending through the TMCF canopy. When corrected to a common temperature, average V(cmax) and J(max) on a leaf area basis were similar to lowland tropical values, but lower when expressed on a mass basis, because of the higher TMCF LMA values. By contrast, R(d) on an area basis was higher than found in tropical lowland forests at a common temperature, and similar to lowland forests on a mass basis. The TMCF J(max)-V(cmax) relationship was steeper than in other tropical biomes, and we propose that this can be explained by either the light conditions or the relatively low VPD in the studied TMCF. Furthermore, V(cmax) had a significant-though relatively weak and shallow-relationship with N on an area basis, but not with P, which is consistent with the general hypothesis that TMCFs are N rather than P limited. Finally, the observed V(cmax)-N relationship (i.e., maximum photosynthetic nitrogen use efficiency) was distinctly different from those in tropical and temperate regions, probably because the TMCF leaves compensate for reduced Rubisco activity in cool environments.


Assuntos
Fotossíntese , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Árvores , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Tamanho do Órgão , Peru , Fósforo/metabolismo , Folhas de Planta/anatomia & histologia , Ribulose-Bifosfato Carboxilase/metabolismo , Temperatura , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...