Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7691, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169828

RESUMO

Elastomers such as silicone are common in medical devices (catheters, prosthetic implants, endoscopes), but they remain prone to microbial colonization and biofilm infections. For the first time, our work shows that rates of microbial surface attachment to polydimethylsiloxane (PDMS) silicone can be significantly affected by mechanical deformation. For a section of bent commercial catheter tubing, bacteria (P. aeruginosa) show a strong preference for the 'convex' side compared to the 'concave' side, by a factor of 4.2. Further testing of cast PDMS materials in bending only showed a significant difference for samples that were manually wiped (damaged) beforehand (1.75 × 104 and 6.02 × 103 cells/mm2 on the convex and concave sides, respectively). We demonstrate that surface microcracks in elastomers are opened under tensile stress (convex bending) to become 'activated' as sites for microbial colonization. This work demonstrates that the high elastic limit of elastomers enables these microcracks to reversibly open and close, as 'dynamic defects'. Commercial catheters have relatively high surface roughness inherent to manufacturing, but we show that even manual wiping of newly-cast PDMS is sufficient to generate surface microcracks. We consider the implication for medical devices that feature sustained, surgical, or cyclic deformation, in which localized tensile conditions may expose these surface defects to opportunistic microbes. As a result, our work showcases serious potential problems in the widespread usage and development of elastomers in medical devices.


Assuntos
Elastômeros , Elastômeros de Silicone , Dimetilpolisiloxanos , Próteses e Implantes
2.
Colloids Surf B Biointerfaces ; 200: 111579, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33517152

RESUMO

Indwelling urinary catheters are a common medical device used to relieve urinary retention. Many patients who undergo urinary catheterization develop urinary tract infections (UTIs), which can lead to severe medical complications and high cost of subsequent treatment. Recent years have seen a number of attempts at reducing the rate of UTIs in catheterized patients via catheter surface modifications. In this work, a low cost, robust anti-thrombogenic, and sterilizable anti-fouling layer based on a covalently-bound monoethylene glycol hydroxide (MEG-OH) was attached to polyurethane, a polymeric material commonly used to fabricate catheters. Modified polyurethane tubing was compared to bare tubing after exposure to a wide spectrum of pathogens including Gram-negative bacteria (Pesudomonas aeruginosa, Escherichia coli), Gram-positive bacteria (Staphylococcus aureus) and a fungus (Candida albicans). It has been demonstrated that the MEG-OH monolayer was able to significantly reduce the amount of adhesion of pathogens present on the material surface, with between 85 and 96 % reduction after 24 h of exposure. Additionally, similar reductions in surface fouling were observed following autoclave sterilization, long term storage of samples in air, and longer exposure up to 3 days.


Assuntos
Poliuretanos , Infecções Urinárias , Antibacterianos/uso terapêutico , Cateteres de Demora , Humanos , Cateterismo Urinário , Cateteres Urinários , Infecções Urinárias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA