Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 42(2): 135-141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169484

RESUMO

COX16 is involved in the biogenesis of cytochrome-c-oxidase (complex IV), the terminal complex of the mitochondrial respiratory chain. We present the first report of two unrelated patients with the homozygous nonsense variant c.244C>T(p. Arg82*) in COX16 with hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis, and isolated complex IV deficiency. The absence of COX16 protein expression leads to a complete loss of the holo-complex IV, as detected by Western blot in patient fibroblasts. Lentiviral transduction of patient fibroblasts with wild-type COX16 complementary DNA rescued complex IV biosynthesis. We hypothesize that COX16 could play a role in the copper delivery route of the COX2 module as part of the complex IV assembly. Our data provide clear evidence for the pathogenicity of the COX16 variant as a cause for the observed clinical features and the isolated complex IV deficiency in these two patients and that COX16 deficiency is a cause for mitochondrial disease.


Assuntos
Acidose Láctica , Encefalopatias , Cardiomiopatias , Deficiência de Citocromo-c Oxidase , Hepatopatias , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Acidose Láctica/genética , Cardiomiopatias/genética , Deficiência de Citocromo-c Oxidase/genética , Humanos , Recém-Nascido , Proteínas Mitocondriais/metabolismo
2.
J Pediatr ; 196: 309-313.e3, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29395179

RESUMO

We demonstrate that a heterozygous nuclear variant in the gene encoding mitochondrial complex I subunit NDUFV1 aggravates the cellular phenotype in the presence of a mitochondrial DNA variant in complex I subunit ND1. Our findings suggest that heterozygous variants could be more significant in inherited mitochondrial diseases than hitherto assumed.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/genética , NADH Desidrogenase/genética , Criança , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Feminino , Testes Genéticos/métodos , Heterozigoto , Humanos , Recém-Nascido , Masculino , Doenças Mitocondriais/diagnóstico , Mutação , Fenótipo
3.
Eur J Hum Genet ; 25(11): 1273-1277, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28853723

RESUMO

Mitochondrial respiratory chain complex I consists of 44 different subunits and can be subgrouped into three functional modules: the Q-, the P- and the N-module. NDUFAF4 (C6ORF66) is an assembly factor of complex I that associates with assembly intermediates of the Q-module. Via exome sequencing, we identified a homozygous missense variant in a complex I-deficient patient with Leigh syndrome. Supercomplex analysis in patient fibroblasts revealed specifically altered stoichiometry. Detailed assembly analysis of complex I, indicative of all of its assembly routes, showed an accumulation of parts of the P- and the N-module but not the Q-module. Lentiviral complementation of patient fibroblasts with wild-type NDUFAF4 rescued complex I deficiency and the assembly defect, confirming the causal role of the variant. Our report on the second family affected by an NDUFAF4 variant further characterizes the phenotypic spectrum and sheds light into the role of NDUFAF4 in mitochondrial complex I biogenesis.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Doença de Leigh/genética , Mutação de Sentido Incorreto , Proteínas de Ligação a Calmodulina/metabolismo , Células Cultivadas , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Homozigoto , Humanos , Lactente , Doença de Leigh/patologia , Masculino , Multimerização Proteica
4.
Am J Hum Genet ; 99(1): 208-16, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27374773

RESUMO

Mitochondrial complex I deficiency results in a plethora of often severe clinical phenotypes manifesting in early childhood. Here, we report on three complex-I-deficient adult subjects with relatively mild clinical symptoms, including isolated, progressive exercise-induced myalgia and exercise intolerance but with normal later development. Exome sequencing and targeted exome sequencing revealed compound-heterozygous mutations in TMEM126B, encoding a complex I assembly factor. Further biochemical analysis of subject fibroblasts revealed a severe complex I deficiency caused by defective assembly. Lentiviral complementation with the wild-type cDNA restored the complex I deficiency, demonstrating the pathogenic nature of these mutations. Further complexome analysis of one subject indicated that the complex I assembly defect occurred during assembly of its membrane module. Our results show that TMEM126B defects can lead to complex I deficiencies and, interestingly, that symptoms can occur only after exercise.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Debilidade Muscular/genética , Mutação , Adolescente , Adulto , Criança , Complexo I de Transporte de Elétrons/genética , Exercício Físico , Exoma/genética , Teste de Complementação Genética , Heterozigoto , Humanos , Lactente , Masculino , Adulto Jovem
5.
Hum Mol Genet ; 23(23): 6356-65, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008109

RESUMO

Complex III (cytochrome bc1) is a protein complex of the mitochondrial inner membrane that transfers electrons from ubiquinol to cytochrome c. Its assembly requires the coordinated expression of mitochondrial-encoded cytochrome b and nuclear-encoded subunits and assembly factors. Complex III deficiency is a severe multisystem disorder caused by mutations in subunit genes or assembly factors. Sequence-profile-based orthology predicts C11orf83, hereafter named UQCC3, to be the ortholog of the fungal complex III assembly factor CBP4. We describe a homozygous c.59T>A missense mutation in UQCC3 from a consanguineous patient diagnosed with isolated complex III deficiency, displaying lactic acidosis, hypoglycemia, hypotonia and delayed development without dysmorphic features. Patient fibroblasts have reduced complex III activity and lower levels of the holocomplex and its subunits than controls. They have no detectable UQCC3 protein and have lower levels of cytochrome b protein. Furthermore, in patient cells, cytochrome b is absent from a high-molecular-weight complex III. UQCC3 is reduced in cells depleted for the complex III assembly factors UQCC1 and UQCC2. Conversely, absence of UQCC3 in patient cells does not affect UQCC1 and UQCC2. This suggests that UQCC3 functions in the complex III assembly pathway downstream of UQCC1 and UQCC2 and is consistent with what is known about the function of Cbp4 and of the fungal orthologs of UQCC1 and UQCC2, Cbp3 and Cbp6. We conclude that UQCC3 functions in complex III assembly and that the c.59T>A mutation has a causal role in complex III deficiency.


Assuntos
Proteínas de Transporte/genética , Citocromos b/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Consanguinidade , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Complexo III da Cadeia de Transporte de Elétrons/genética , Estabilidade Enzimática , Feminino , Fibroblastos/metabolismo , Humanos , Recém-Nascido , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto
6.
Hum Mol Genet ; 22(4): 656-67, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23125284

RESUMO

The mitochondrial respiratory chain complex IV (cytochrome c oxidase) is a multi-subunit enzyme that transfers electrons from cytochrome c to molecular oxygen, yielding water. Its biogenesis requires concerted expression of mitochondria- and nuclear-encoded subunits and assembly factors. In this report, we describe a homozygous missense mutation in FAM36A from a patient who displays ataxia and muscle hypotonia. The FAM36A gene is a remote, putative ortholog of the fungal complex IV assembly factor COX20. Messenger RNA (mRNA) and protein co-expression analyses support the involvement of FAM36A in complex IV function in mammals. The c.154A>C mutation in the FAM36A gene, a mutation that is absent in sequenced exomes, leads to a reduced activity and lower levels of complex IV and its protein subunits. The FAM36A protein is nearly absent in patient's fibroblasts. Cells affected by the mutation accumulate subassemblies of complex IV that contain COX1 but are almost devoid of COX2 protein. We observe co-purification of FAM36A and COX2 proteins, supporting that the FAM36A defect hampers the early step of complex IV assembly at the incorporation of the COX2 subunit. Lentiviral complementation of patient's fibroblasts with wild-type FAM36A increases the complex IV activity as well as the amount of holocomplex IV and of individual subunits. These results establish the function of the human gene FAM36A/COX20 in complex IV assembly and support a causal role of the gene in complex IV deficiency.


Assuntos
Anormalidades Múltiplas/genética , Ataxia/genética , Deficiência de Citocromo-c Oxidase/genética , Canais Iônicos/genética , Hipotonia Muscular/genética , Multimerização Proteica , Anormalidades Múltiplas/metabolismo , Sequência de Aminoácidos , Animais , Ataxia/metabolismo , Sequência de Bases , Células Cultivadas , Criança , Consanguinidade , Deficiência de Citocromo-c Oxidase/metabolismo , Análise Mutacional de DNA , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Expressão Gênica , Humanos , Canais Iônicos/metabolismo , Ácido Láctico/sangue , Ácido Láctico/líquido cefalorraquidiano , Masculino , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Hipotonia Muscular/metabolismo , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/genética
7.
PLoS Genet ; 9(12): e1004034, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385928

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of cellular ATP. Complex III (ubiquinol-cytochrome c oxidoreductase) is the third of five OXPHOS complexes. Complex III assembly relies on the coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by mitochondrial DNA (mtDNA). Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2) in a consanguineous Lebanese patient displaying complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient diagnosis, and provides insight into human complex III assembly by establishing that UQCC1 and UQCC2 are complex III assembly factors participating in cytochrome b biogenesis.


Assuntos
Citocromos b/biossíntese , Complexo III da Cadeia de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Consanguinidade , Citocromos b/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Homozigoto , Humanos , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Doenças Mitocondriais/terapia , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Fosforilação Oxidativa , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mitochondrion ; 12(3): 399-405, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22387847

RESUMO

The biogenesis of mitochondrial NADH:ubiquinone oxidoreductase (complex I) requires several assembly chaperones. These so-called complex I assembly factors have emerged as a new class of human disease genes. Here, we identified putative assembly factor homologues in Caenorhabditis elegans. We demonstrate that two candidates (C50B8.3/NUAF-1, homologue of NDUFAF1 and R07H5.3/NUAF-3, homologue of NDUFAF3) clearly affect complex I function. Assembly factor deficient worms were shorter, showed a diminished brood size and displayed reduced fat content. Our results suggest that mitochondrial complex I biogenesis is evolutionarily conserved. Moreover, Caenorhabditis elegans appears to be a promising model organism to study assembly factor related human diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Homologia de Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Complexo I de Transporte de Elétrons/genética , Humanos , Proteínas Mitocondriais/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Biogênese de Organelas
9.
Nucleic Acids Res ; 40(9): 4040-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22238375

RESUMO

In a comparative genomics study for mitochondrial ribosome-associated proteins, we identified C7orf30, the human homolog of the plant protein iojap. Gene order conservation among bacteria and the observation that iojap orthologs cannot be transferred between bacterial species predict this protein to be associated with the mitochondrial ribosome. Here, we show colocalization of C7orf30 with the large subunit of the mitochondrial ribosome using isokinetic sucrose gradient and 2D Blue Native polyacrylamide gel electrophoresis (BN-PAGE) analysis. We co-purified C7orf30 with proteins of the large subunit, and not with proteins of the small subunit, supporting interaction that is specific to the large mitoribosomal complex. Consistent with this physical association, a mitochondrial translation assay reveals negative effects of C7orf30 siRNA knock-down on mitochondrial gene expression. Based on our data we propose that C7orf30 is involved in ribosomal large subunit function. Sequencing the gene in 35 patients with impaired mitochondrial translation did not reveal disease-causing mutations in C7orf30.


Assuntos
Proteínas Mitocondriais/fisiologia , Biossíntese de Proteínas , Proteínas Ribossômicas/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Genes Bacterianos , Células HEK293 , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Óperon , Filogenia , Estrutura Terciária de Proteína , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Análise de Sequência de DNA
10.
Biochim Biophys Acta ; 1822(2): 168-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22036843

RESUMO

In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the K(M) of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the K(M) observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.


Assuntos
Complexo I de Transporte de Elétrons/genética , Doença de Leigh/genética , Mitocôndrias/enzimologia , Mutação , NADH Desidrogenase/genética , Sequência de Aminoácidos , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Catálise , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Homozigoto , Humanos , Lactente , Recém-Nascido , Doença de Leigh/enzimologia , Doença de Leigh/metabolismo , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , NADH Desidrogenase/metabolismo , Conformação Proteica , Transdução Genética/métodos , Ubiquinona/metabolismo
11.
Am J Hum Genet ; 88(4): 488-93, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21457908

RESUMO

The assembly of mitochondrial respiratory chain complex IV (cytochrome c oxidase) involves the coordinated action of several assembly chaperones. In Saccharomyces cerevisiae, at least 30 different assembly chaperones have been identified. To date, pathogenic mutations leading to a mitochondrial disorder have been identified in only seven of the corresponding human genes. One of the genes for which the relevance to human pathology is unknown is C2orf64, an ortholog of the S. cerevisiae gene PET191. This gene has previously been shown to be a complex IV assembly factor in yeast, although its exact role is still unknown. Previous research in a large cohort of complex IV deficient patients did not support an etiological role of C2orf64 in complex IV deficiency. In this report, a homozygous mutation in C2orf64 is described in two siblings affected by fatal neonatal cardiomyopathy. Pathogenicity of the mutation is supported by the results of a complementation experiment, showing that complex IV activity can be fully restored by retroviral transduction of wild-type C2orf64 in patient-derived fibroblasts. Detailed analysis of complex IV assembly intermediates in patient fibroblasts by 2D-BN PAGE revealed the accumulation of a small assembly intermediate containing subunit COX1 but not the COX2, COX4, or COX5b subunits, indicating that C2orf64 is involved in an early step of the complex IV assembly process. The results of this study demonstrate that C2orf64 is essential for human complex IV assembly and that C2orf64 mutational analysis should be considered for complex IV deficient patients, in particular those with hypertrophic cardiomyopathy.


Assuntos
Cardiomiopatias/enzimologia , Cardiomiopatias/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Consanguinidade , Análise Mutacional de DNA , Eletroforese em Gel Bidimensional , Evolução Fatal , Feminino , Fibroblastos/enzimologia , Teste de Complementação Genética , Homozigoto , Humanos , Recém-Nascido , Masculino , Dados de Sequência Molecular , Fases de Leitura Aberta , Linhagem , Multimerização Proteica , Homologia de Sequência de Aminoácidos
12.
Anal Biochem ; 407(2): 287-9, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20705045

RESUMO

Blue native polyacrylamide gel electrophoresis (BN-PAGE) is an essential tool for investigating mitochondrial respiratory chain complexes. However, with current BN-PAGE protocols for Caenorhabditis elegans (C. elegans), large worm amounts and high quantities of mitochondrial protein are required to yield clear results. Here, we present an efficient approach to isolate mitochondrial complex I (NADH:ubiquinone oxidoreductase) from C. elegans, grown on agar plates. We demonstrate that considerably lower amounts of mitochondrial protein are sufficient to isolate complex I and to display clear in-gel activity results. Moreover, we present the first complex I assembly profile for C. elegans, obtained by two-dimensional BN/SDS-PAGE.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida/métodos , Mitocôndrias/metabolismo , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/isolamento & purificação , Complexo I de Transporte de Elétrons/isolamento & purificação , NAD/química , Oxirredutases/química
13.
Am J Hum Genet ; 84(6): 718-27, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19463981

RESUMO

Mitochondrial complex I deficiency is the most prevalent and least understood disorder of the oxidative phosphorylation system. The genetic cause of many cases of isolated complex I deficiency is unknown because of insufficient understanding of the complex I assembly process and the factors involved. We performed homozygosity mapping and gene sequencing to identify the genetic defect in five complex I-deficient patients from three different families. All patients harbored mutations in the NDUFAF3 (C3ORF60) gene, of which the pathogenic nature was assessed by NDUFAF3-GFP baculovirus complementation in fibroblasts. We found that NDUFAF3 is a genuine mitochondrial complex I assembly protein that interacts with complex I subunits. Furthermore, we show that NDUFAF3 tightly interacts with NDUFAF4 (C6ORF66), a protein previously implicated in complex I deficiency. Additional gene conservation analysis links NDUFAF3 to bacterial-membrane-insertion gene cluster SecF/SecD/YajC and to C8ORF38, also implicated in complex I deficiency. These data not only show that NDUFAF3 mutations cause complex I deficiency but also relate different complex I disease genes by the close cooperation of their encoded proteins during the assembly process.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Complexo I de Transporte de Elétrons/genética , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Consanguinidade , Análise Mutacional de DNA , Eletroforese em Gel de Poliacrilamida , Evolução Fatal , Feminino , Teste de Complementação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Linhagem , Homologia de Sequência de Aminoácidos
14.
Genes Dev ; 21(5): 615-24, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17344420

RESUMO

Ecsit is a cytosolic adaptor protein essential for inflammatory response and embryonic development via the Toll-like and BMP (bone morphogenetic protein) signal transduction pathways, respectively. Here, we demonstrate a mitochondrial function for Ecsit (an evolutionary conserved signaling intermediate in Toll pathways) in the assembly of mitochondrial complex I (NADH:ubiquinone oxidoreductase). An N-terminal targeting signal directs Ecsit to mitochondria, where it interacts with assembly chaperone NDUFAF1 in 500- to 850-kDa complexes as demonstrated by affinity purification and vice versa RNA interference (RNAi) knockdowns. In addition, Ecsit knockdown results in severely impaired complex I assembly and disturbed mitochondrial function. These findings support a function for Ecsit in the assembly or stability of mitochondrial complex I, possibly linking assembly of oxidative phosphorylation complexes to inflammatory response and embryonic development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Linhagem Celular , Desenvolvimento Embrionário , Células HeLa , Humanos , Mitocôndrias/química , Dados de Sequência Molecular , NADH Desidrogenase/análise , Fosforilação Oxidativa , Interferência de RNA
15.
Mol Genet Metab ; 91(2): 176-82, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17383918

RESUMO

Dysfunction of complex I (NADH:ubiquinone oxidoreductase; CI), the largest enzyme of the oxidative phosphorylation (OXPHOS) system, often results in severe neuromuscular disorders and early childhood death. Mutations in its seven mitochondrial and 38 nuclear DNA-encoded structural components can only partly explain these deficiencies. Recently, CI assembly chaperones NDUFAF1 and B17.2L were linked to CI deficiency, but it is still unclear by which mechanism. To better understand their requirement during assembly we have studied their presence in CI subcomplexes in a cohort of CI deficient patients using one- and two-dimensional blue-native PAGE. This analysis revealed distinct differences between their associations to subcomplexes in different patients. B17.2L occurred in a 830 kDa subcomplex specifically in patients with mutations in subunits NDUFV1 and NDUFS4. Contrasting with this seemingly specific requirement, the previously described NDUFAF1 association to 500-850 kDa intermediates did not appear to be related to the nature and severity of the CI assembly defect. Surprisingly, even in the absence of assembly intermediates in a patient harboring a mutation in translation elongation factor G1 (EFG1), NDUFAF1 remained associated to the 500-850 kDa subcomplexes. These findings illustrate the difference in mechanism between B17.2L and NDUFAF1 and suggest that the involvement of NDUFAF1 in the assembly process could be indirect rather than direct via the binding to assembly intermediates.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , NADH Desidrogenase/genética , Linhagem Celular , Complexo I de Transporte de Elétrons/química , Eletroforese em Gel de Poliacrilamida , Humanos , Proteínas Mitocondriais/química , Chaperonas Moleculares/química , Mutação , NADH Desidrogenase/química , Subunidades Proteicas/química , Subunidades Proteicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...