Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Glob Chang Biol ; 30(4): e17284, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38647253

RESUMO

In this commentary, I will discuss how climate warming might influence the impacts of chemicals on (aquatic) ecosystems. It provides a commentary on Sinclair et al. (2024).


Assuntos
Organismos Aquáticos , Mudança Climática , Invertebrados , Temperatura , Animais , Invertebrados/fisiologia , Invertebrados/efeitos dos fármacos , Organismos Aquáticos/fisiologia , Ecossistema , Poluentes Químicos da Água , Distribuição Animal
2.
Chemosphere ; 349: 140706, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992907

RESUMO

The antidepressant fluoxetine is frequently detected in aquatic ecosystems, yet the effects on aquatic communities and ecosystems are still largely unknown. Therefore the aim of this study is to assess the effects of the long-term application of fluoxetine on key components of aquatic ecosystems including macroinvertebrate-, zooplankton-, phytoplankton- and microbial communities and organic matter decomposition by using traditional and non-traditional assessment methods. For this, we exposed 18 outdoor mesocosms (water volume of 1530 L and 10 cm of sediment) to five different concentrations of fluoxetine (0.2, 2, 20 and 200 µg/L) for eight weeks, followed by an eight-week recovery period. We quantified population and community effects by morphological identification, environmental DNA metabarcoding, in vitro and in vivo bioassays and measured organic matter decomposition as a measure of ecosystem functioning. We found effects of fluoxetine on bacterial, algal, zooplankton and macroinvertebrate communities and decomposition rates, mainly for the highest (200 µg/L) treatment. Treatment-related decreases in abundances were found for damselfly larvae (NOEC of 0.2 µg/L) and Sphaeriidae bivalves (NOEC of 20 µg/L), whereas Asellus aquaticus increased in abundance (NOEC <0.2 µg/L). Fluoxetine decreased photosynthetic activity and primary production of the suspended algae community. eDNA assessment provided additional insights by revealing that the algae belonging to the class Cryptophyceae and certain cyanobacteria taxa were the most negatively responding taxa to fluoxetine. Our results, together with results of others, suggest that fluoxetine can alter community structure and ecosystem functioning and that some impacts of fluoxetine on certain taxa can already be observed at environmentally realistic concentrations.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Fluoxetina/toxicidade , Código de Barras de DNA Taxonômico , Água Doce/química , Zooplâncton , Fitoplâncton , Antidepressivos/farmacologia , Bioensaio , Poluentes Químicos da Água/análise
3.
Integr Environ Assess Manag ; 20(2): 367-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084033

RESUMO

The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367-383. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Modelos Climáticos , Ecossistema , Teorema de Bayes , Mudança Climática , Ecotoxicologia , Medição de Risco
4.
Environ Toxicol Chem ; 43(1): 182-196, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750580

RESUMO

Bayesian network (BN) models are increasingly used as tools to support probabilistic environmental risk assessments (ERAs), because they can better account for uncertainty compared with the simpler approaches commonly used in traditional ERA. We used BNs as metamodels to link various sources of information in a probabilistic framework, to predict the risk of pesticides to aquatic communities under given scenarios. The research focused on rice fields surrounding the Albufera Natural Park (Valencia, Spain), and considered three selected pesticides: acetamiprid (an insecticide), 2-methyl-4-chlorophenoxyacetic acid (MCPA; a herbicide), and azoxystrobin (a fungicide). The developed BN linked the inputs and outputs of two pesticide models: a process-based exposure model (Rice Water Quality [RICEWQ]), and a probabilistic effects model (Predicts the Ecological Risk of Pesticides [PERPEST]) using case-based reasoning with data from microcosm and mesocosm experiments. The model characterized risk at three levels in a hierarchy: biological endpoints (e.g., molluscs, zooplankton, insects, etc.), endpoint groups (plants, invertebrates, vertebrates, and community processes), and community. The pesticide risk to a biological endpoint was characterized as the probability of an effect for a given pesticide concentration interval. The risk to an endpoint group was calculated as the joint probability of effect on any of the endpoints in the group. Likewise, community-level risk was calculated as the joint probability of any of the endpoint groups being affected. This approach enabled comparison of risk to endpoint groups across different pesticide types. For example, in a scenario for the year 2050, the predicted risk of the insecticide to the community (40% probability of effect) was dominated by the risk to invertebrates (36% risk). In contrast, herbicide-related risk to the community (63%) resulted from risk to both plants (35%) and invertebrates (38%); the latter might represent (in the present study) indirect effects of toxicity through the food chain. This novel approach combines the quantification of spatial variability of exposure with probabilistic risk prediction for different components of aquatic ecosystems. Environ Toxicol Chem 2024;43:182-196. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Herbicidas , Inseticidas , Oryza , Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Praguicidas/análise , Inseticidas/toxicidade , Ecossistema , Teorema de Bayes , Invertebrados , Medição de Risco/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
5.
Integr Environ Assess Manag ; 20(2): 401-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38018499

RESUMO

An understanding of the combined effects of climate change (CC) and other anthropogenic stressors, such as chemical exposures, is essential for improving ecological risk assessments of vulnerable ecosystems. In the Great Barrier Reef, coral reefs are under increasingly severe duress from increasing ocean temperatures, acidification, and cyclone intensities associated with CC. In addition to these stressors, inshore reef systems, such as the Mackay-Whitsunday coastal zone, are being impacted by other anthropogenic stressors, including chemical, nutrient, and sediment exposures related to more intense rainfall events that increase the catchment runoff of contaminated waters. To illustrate an approach for incorporating CC into ecological risk assessment frameworks, we developed an adverse outcome pathway network to conceptually delineate the effects of climate variables and photosystem II herbicide (diuron) exposures on scleractinian corals. This informed the development of a Bayesian network (BN) to quantitatively compare the effects of historical (1975-2005) and future projected climate on inshore hard coral bleaching, mortality, and cover. This BN demonstrated how risk may be predicted for multiple physical and biological stressors, including temperature, ocean acidification, cyclones, sediments, macroalgae competition, and crown of thorns starfish predation, as well as chemical stressors such as nitrogen and herbicides. Climate scenarios included an ensemble of 16 downscaled models encompassing current and future conditions based on multiple emission scenarios for two 30-year periods. It was found that both climate-related and catchment-related stressors pose a risk to these inshore reef systems, with projected increases in coral bleaching and coral mortality under all future climate scenarios. This modeling exercise can support the identification of risk drivers for the prioritization of management interventions to build future resilient reefs. Integr Environ Assess Manag 2024;20:401-418. © 2023 Norwegian Institute for Water Research and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Antozoários , Recifes de Corais , Humanos , Animais , Ecossistema , Mudança Climática , Teorema de Bayes , Concentração de Íons de Hidrogênio , Água do Mar , Austrália
6.
Environ Pollut ; 343: 123199, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128712

RESUMO

Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 µg/L). These concentrations include mean (0.15 µg/L) and maximum detected concentrations (15 and 150 µg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 µg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 µg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Antibacterianos/toxicidade , Sulfametoxazol/toxicidade , Sulfametoxazol/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Zooplâncton , Água Doce/análise
7.
Environ Sci Technol ; 57(50): 21029-21037, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38062939

RESUMO

Temperature is a crucial environmental factor affecting the distribution and performance of ectothermic organisms. This study introduces a new temperature damage model to interpret their thermal stress. Inspired by the ecotoxicological damage model in the General Unified Threshold model for Survival (GUTS) framework, the temperature damage model assumes that damage depends on the balance between temperature-dependent accumulation and constant repair. Mortality due to temperature stress is driven by the damage level exceeding a threshold. Model calibration showed a good agreement with the measured survival of Gammarus pulex exposed to different constant temperatures. Further, model simulations, including constant temperatures, daily temperature fluctuations, and heatwaves, demonstrated the model's ability to predict temperature effects for various environmental scenarios. With this, the present study contributes to the mechanistic understanding of temperature as a single stressor while facilitating the incorporation of temperature as an additional stressor alongside chemicals in mechanistic multistressor effect models.


Assuntos
Anfípodes , Animais , Toxicocinética , Anfípodes/metabolismo , Ecotoxicologia
8.
Nat Commun ; 14(1): 3507, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316479

RESUMO

Temperature and biodiversity changes occur in concert, but their joint effects on ecological stability of natural food webs are unknown. Here, we assess these relationships in 19 planktonic food webs. We estimate stability as structural stability (using the volume contraction rate) and temporal stability (using the temporal variation of species abundances). Warmer temperatures were associated with lower structural and temporal stability, while biodiversity had no consistent effects on either stability property. While species richness was associated with lower structural stability and higher temporal stability, Simpson diversity was associated with higher temporal stability. The responses of structural stability were linked to disproportionate contributions from two trophic groups (predators and consumers), while the responses of temporal stability were linked both to synchrony of all species within the food web and distinctive contributions from three trophic groups (predators, consumers, and producers). Our results suggest that, in natural ecosystems, warmer temperatures can erode ecosystem stability, while biodiversity changes may not have consistent effects.


Assuntos
Ecossistema , Cadeia Alimentar , Temperatura , Biodiversidade , Estado Nutricional
9.
Environ Pollut ; 327: 121498, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965684

RESUMO

Climate impacts of elevated temperatures and more severe and frequent weather extremes like heatwaves are globally becoming discernible on nature. While a mechanistic understanding is pivotal for ecosystem management, stressors like pesticides may interact with warming, leading to unpredictable effects on freshwater ecosystems. These multiple stressor studies are scarce and experimental designs often lack environmental realism. To investigate the multiple stressor effects, we conducted a microcosm experiment for 48 days comprising benthic macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The fungicide carbendazim (100 µg/L) was investigated combined with temperature scenarios representing elevated temperatures (+4 °C) or heatwaves (+0 to +8 °C), both applied with similar energy input on a daily fluctuating ambient temperature (18 °C ± 1.5 °C), which served as control. Measurements showed the highest carbendazim dissipation in water under heatwaves followed by elevated and ambient temperatures. Average carbendazim concentrations were about 50% in water and 16% in sediment of the nominal concentration. In both heated cosms, zooplankton community dynamics revealed an unexpected shift from Rotifera to Cladocera and Copepoda nauplii, indicating variations in their thermal sensitivity, tolerance and resilience. Notably, warming and heatwaves shaped community responses similarly, suggesting heat intensity rather than distribution patterns determined the community structure. Heatwaves led to significant early and longer-lasting adverse effects that were exacerbated over time with Cladocera and Copepoda being most sensitive likely due to significant carbendazim interactions. Finally, a structural equation model demonstrated significant relationships between zooplankton and macrophytes and significantly negative carbendazim effects on zooplankton, whereas positive on macroinvertebrate abundances. The relationship between macroinvertebrate feeding and abundance was masked by significantly temperature-affected microbial leaf litter decomposition. Despite the thermal tolerance of zooplankton communities, our study highlights an increased pesticide threat under temperature extremes. More intense heatwaves are thus likely to cause significant alterations in community assemblages which will adversely affect ecosystem's processes and functions.


Assuntos
Cladocera , Copépodes , Praguicidas , Animais , Ecossistema , Praguicidas/toxicidade , Temperatura , Água Doce/química , Zooplâncton/fisiologia , Água
10.
Sci Total Environ ; 872: 162173, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36775155

RESUMO

Fluoxetine is one of the worlds most prescribed antidepressant, and frequently detected in surface waters. Once present in the aquatic environment, fluoxetine has been shown to disrupt the swimming behaviour of fish and invertebrates. However, swimming behaviour is also known to be highly variable according to experimental conditions, potentially concealing relevant effects. Therefore, the aims of this study were two-fold: i) investigate the swimming and feeding behaviour of Gammarus pulex after exposure to the antidepressant fluoxetine (0.2, 2, 20, and 200 µg/L), and ii) assess to what degree the experimental test duration (short-term and long-term) and test location (laboratory and semi-field conditions) affect gammarid's swimming behaviour. We used automated video tracking and analysis to asses a range of swimming behaviours of G. pulex, including swimming speed, startle responses after light transition, acceleration, curvature and thigmotaxis. We found larger effects on the swimming behaviour of G. pulex due to experimental conditions than due to tested antidepressant concentrations. Gammarids swam faster, more straight and showed a stronger startle response during light transition when kept under semi-field conditions compared to the laboratory. Effects found for different test durations were opposite in the laboratory and semi-field. In the laboratory gammarids swam slower and spent more time at the inner zone of the arena after 2 days compared to 21 days while for the semi-field the reverse was observed. Fluoxetine had only minor impacts on the swimming behaviour of G. pulex, but experimental conditions influenced behavioural outcomes in response to fluoxetine exposure. Overall, our results highlight the importance of standardizing and optimizing experimental protocols that assess behaviour to achieve reproducible results in ecotoxicology.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Fluoxetina/toxicidade , Anfípodes/fisiologia , Natação , Comportamento Animal , Antidepressivos/toxicidade , Poluentes Químicos da Água/toxicidade
11.
Chemosphere ; 316: 137794, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36638923

RESUMO

Pesticide registration in developing countries like Ethiopia is often not supported by substantiated risk assessment procedures. In this study, we evaluated the PRIMET (Pesticide Risks in the Tropics for Man, Environment and Trade) Registration_Ethiopia_1.1 model which is a tool developed to assess the risks to non-target protection goals. All the 103 registered active ingredients (a.i.) in Ethiopia, except those used for flower and storage pest control purposes, were evaluated on their environmental risks. Data on physico-chemical characteristics, toxicity and pesticide use patterns were mined from either the information given in the dossier or public databases. Together with scenarios specifically developed for Ethiopia, these data were used to perform a risk assessment for the aquatic and terrestrial environment as well as for vertebrates including humans via contaminated drinking water exposure. Results indicated that 11 and 16% of the a.i.s are indicated to pose high acute risk and 7.3 and 11% high chronic risks for fish and aquatic invertebrates, respectively. Similarly, 5.5 and 8.7% high acute risks and 6.8 and 3.9% high chronic risks were observed for the soil ecosystem and birds, respectively. 23% of the evaluated active ingredients were indicated to be highly risky to bees when beehives are present inside the sprayed crop while 7.8% of them are highly risky when beehives are present outside the field of the sprayed crop. The fungicide metalaxyl, the herbicides acetochlor, alachlor, mecoprop and tembotrion, and the insecticides carbaryl, chlorpyrifos, diazinon and methidathion were predicted to pose high acute or chronic risks to humans or other vertebrates if surface water is used as a source of drinking water. Future studies should give emphasis on how the risk assessment results of this study can be implemented to aid the registration process.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Humanos , Animais , Abelhas , Praguicidas/toxicidade , Praguicidas/análise , Ecossistema , Etiópia , Medição de Risco , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 856(Pt 2): 158886, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36167137

RESUMO

A comprehensive understanding of chemical toxicity and temperature interaction is essential to improve ecological risk assessment under climate change. However, there is only limited knowledge about the effect of temperature on the toxicity of chemicals. To fill this knowledge gap and to improve our mechanistic understanding of the influence of temperature, the current study explored toxicokinetics and the chronic toxicity effects of two insecticides, imidacloprid (IMI) and flupyradifurone (FPF), on Gammarus pulex at different temperatures (7-24 °C). In the toxicokinetics tests, organisms were exposed to IMI or FPF for 2 days and then transferred to clean water for 3 days of elimination at 7, 18, or 24 °C. In the chronic tests, organisms were exposed to the individual insecticides for 28 days at 7, 11, or 15 °C. Our research found that temperature impacted the toxicokinetics and the chronic toxicity of both IMI and FPF, while the extent of such impact differed for each insecticide. For IMI, the uptake rate and biotransformation rate increased with temperature, and mortality and food consumption inhibition was enhanced by temperature. While for FPF, the elimination rate increased with temperature at a higher rate than the increasing uptake rate, resulting in a smaller pronounced effect of temperature on mortality compared to IMI. In addition, the adverse effects of the insecticides on sublethal endpoints (food consumption and dry weight) were exacerbated by elevated temperatures. Our results highlight the importance of including temperature in the ecological risk assessment of insecticides in light of global climate change.


Assuntos
Anfípodes , Inseticidas , Poluentes Químicos da Água , Animais , Inseticidas/farmacologia , Toxicocinética , Temperatura , Neonicotinoides/toxicidade , Anfípodes/fisiologia , Nitrocompostos/toxicidade , Poluentes Químicos da Água/metabolismo
13.
Environ Sci Technol ; 56(22): 15920-15929, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36281980

RESUMO

In the face of global climate change, where temperature fluctuations and the frequency of extreme weather events are increasing, it is needed to evaluate the impact of temperature on the ecological risk assessment of chemicals. Current state-of-the-art mechanistic effect models, such as toxicokinetic-toxicodynamic (TK-TD) models, often do not explicitly consider temperature as a modulating factor. This study implemented the effect of temperature in a widely used modeling framework, the General Unified Threshold model for Survival (GUTS). We tested the model using data from toxicokinetic and toxicity experiments with Gammarus pulex exposed to the insecticides imidacloprid and flupyradifurone. The experiments revealed increased TK rates with increasing temperature and increased toxicity under chronic exposures. Using the widely used Arrhenius equation, we could include the temperature influence into the modeling. By further testing of different model approaches, differences in the temperature scaling of TK and TD model parameters could be identified, urging further investigations of the underlying mechanisms. Finally, our results show that predictions of TK-TD models improve if we include the toxicity modulating effect of temperature explicitly.


Assuntos
Anfípodes , Animais , Toxicocinética , Temperatura , Modelos Biológicos
14.
Ecotoxicol Environ Saf ; 243: 113977, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985198

RESUMO

Flupyradifurone (FPF) is a new type of butenolide insecticide. It was launched on the market in 2015 and is considered an alternative to the widely used neonicotinoids, like imidacloprid (IMI), some of which are banned from outdoor use in the European Union. FPF is claimed to be safe for bees, but its safety for aquatic organisms is unknown. Its high water solubility, persistence in the environment, and potential large-scale use make it urgent to evaluate possible impacts on aquatic systems. The current study assessed the acute and chronic toxicity of FPF for aquatic arthropod species and compared these results with those of imidacloprid. Besides, toxicokinetics and toxicokinetic-toxicodynamic models were used to understand the mechanisms of the toxicity of FPF. The present study results showed that organisms take up FPF slower than IMI and eliminate it faster. In addition, the hazardous concentration 5th percentiles (HC05) value of FPF derived from a species sensitivity distribution (SSD) based on acute toxicity was found to be 0.052 µmol/L (corresponding to 15 µg/L), which was 37 times higher than IMI (0.0014 µmol/L, corresponding to 0.36 µg/L). The chronic 28 days EC10 of FPF for Cloeon dipterum and Gammarus pulex were 7.5 µg/L and 2.9 µg/L, respectively. For G. pulex, after 28 days of exposure, the no observed effect concentration (NOEC) of FPF for food consumption was 0.3 µg/L. A toxicokinetic-toxicodynamic (TKTD) model parameterised on the acute toxicity data well predicted the observed chronic effects of FPF on G. pulex, indicating that toxicity mechanisms of FPF did not change with prolonged exposure time, which is not the case for IMI.


Assuntos
Artrópodes , Inseticidas , Poluentes Químicos da Água , 4-Butirolactona/análogos & derivados , Animais , Abelhas , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Piridinas , Poluentes Químicos da Água/toxicidade
15.
Ecotoxicol Environ Saf ; 242: 113917, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908530

RESUMO

Field collected aquatic invertebrates are often used as test organisms in the refinement of the standard Tier 1 risk assessment of various pollutants. This approach can provide insights into the effects of pollutants on the natural environment. However, researchers often pragmatically select test organisms of a specific sex and/or size, which may not represent the sensitivity of the whole population. To investigate such intraspecies sensitivity differences, we performed standard acute toxicity and toxicokinetic tests with different size classes and sex of Gammarus pulex and Asellus aquaticus. Furthermore, toxicokinetics and toxicodynamics models were used to understand the mechanism of the intraspecies sensitivity differences. We used neonates, juveniles and male and female adults in separate dedicated experiments, in which we exposed the animals to imidacloprid and its bioactive metabolite, imidacloprid-olefin. For both species, we found that neonates were the most sensitive group. For G. pulex, the sensitivity decreased linearly with size, which can be explained by the size-related uptake rate constant in the toxicokinetic process and size-related threshold value in the toxicodynamic process. For A. aquaticus, female adults were least sensitive to imidacloprid, which could be explained by a low internal biotransformation of imidacloprid to imidacloprid-olefin. Besides, imidacloprid-olefin was more toxic than imidacloprid to A. aquaticus, with differences being 8.4 times for females and 2.7 times for males. In conclusion, we established size-related sensitivity differences for G. pulex and sex-related sensitivity for A. aquaticus, and intraspecies differences can be explained by both toxicokinetic and toxicodynamic processes. Our findings suggest that to protect populations in the field, we should consider the size and sex of focal organisms and that a pragmatic selection of test organisms of equal size and/or sex can underestimate the sensitivities of populations in the field.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Alcenos , Animais , Feminino , Masculino , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Poluentes Químicos da Água/toxicidade
16.
HardwareX ; 11: e00307, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35518280

RESUMO

Future global climate change with higher mean temperatures and increased intensity and frequency of heatwaves as extreme weather events will affect aquatic ecosystems with, yet, unpredictable severity and consequences. Although models suggest increased risk of species extinction up to the year 2050 for series of different climate change scenarios, environmental complexity may result in unconsidered effects of future temperature alterations on ecosystems. Apart from these environmental changes, additional anthropogenic stressors, e.g. chemical release, may cause unprecedented interaction effects on ecosystems. Ongoing efforts to better understand such temperature-chemical interaction effects comprise almost exclusively experimental designs using constant temperature regimes instead of environmentally realistic daily temperature variations. In this paper we describe an Arduino-based temperature and heatwave control device (TENTACLE) that is transportable, inexpensive, multifunctional, and easily reproducible. TENTACLE offers water temperature monitoring and manipulation of up to 3 different climate change-related scenarios: i) natural (ambient) sinusoidal fluctuations (laboratory applications), ii) elevated fluctuations, and iii) heatwaves as extreme events. The use of replaceable heating elements and low-cost materials suitable for field studies creates a high flexibility for researchers who may conduct in- or out-door, small- or large-scale, fresh- or salt-water experiments at different geographical locations.

17.
Chemosphere ; 300: 134565, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35436459

RESUMO

Tilapia juvenile (Oreochromis niloticus) (mean weight 50.00 ± 10.00 g) were aqueous exposed to different concentrations of the herbicide prometryn to investigate its acute toxicity, bioaccumulation and uptake and elimination rates. First, a 96-h acute toxicity test was carried out. The resulting 96 h LC50 was 5.49 mg/L, and the 96 h LC10 was 5.02 mg/L. Then, fish were exposed to 0.55 mg/L (1/10 96 h LC50) and 0.055 mg/L (1/100 96 h LC50) of prometryn solution for 28 days, followed by 14 days of elimination in clean groundwater. The result shows that in both water and tissues, prometryn concentrations fluctuated during the exposure period, indicating that steady state was not reached. The bioaccumulation of prometryn was the highest in liver, followed by gill, muscle and blood. The accumulated concentration levels in various tissues were always higher in the high concentration compared to the low concentration. The highest accumulated concentration of prometryn in various tissues in the 0.055 mg/L treatment were for muscle: 0.136 ± 0.0616 mg/kg (1 d), liver: 3.74 ± 2.95 mg/kg (7 d), gill: 0.971 ± 1.45 mg/kg (1 d) and blood: 0.0716 ± 0.0669 mg/kg (22 d). In the 0.55 mg/L treatment, the highest levels were for muscle: 1.27 ± 0.284 mg/kg (1 d), liver: 16.9 ± 12.7 mg/kg (7 d), gill: 8.11 ± 3.02 mg/kg (1 d) and blood: 0.751 ± 0.0775 mg/kg (22 d). The highest bioconcentration factor (BCF) of 93.1 was observed in the liver when exposed to the low concentration. Besides, for other tissues, the highest BCF were for muscle: 5.76, gill: 32.3 and blood: 2.91, all observed in the 0.55 mg/L treatment. Most of the accumulated prometryn was removed from all tissues within 24 h after the organisms were transferred to clean water. However, management of using prometryn in China aquaculture should be improved to prevent possible ecotoxicological effects and ensure food safety.


Assuntos
Ciclídeos , Tilápia , Poluentes Químicos da Água , Animais , Bioacumulação , Prometrina , Água , Poluentes Químicos da Água/toxicidade
18.
Ecol Lett ; 25(6): 1483-1496, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35478314

RESUMO

Predicting the impacts of multiple stressors is important for informing ecosystem management but is impeded by a lack of a general framework for predicting whether stressors interact synergistically, additively or antagonistically. Here, we use process-based models to study how interactions generalise across three levels of biological organisation (physiological, population and consumer-resource) for a two-stressor experiment on a seagrass model system. We found that the same underlying processes could result in synergistic, additive or antagonistic interactions, with interaction type depending on initial conditions, experiment duration, stressor dynamics and consumer presence. Our results help explain why meta-analyses of multiple stressor experimental results have struggled to identify predictors of consistently non-additive interactions in the natural environment. Experiments run over extended temporal scales, with treatments across gradients of stressor magnitude, are needed to identify the processes that underpin how stressors interact and provide useful predictions to management.


Assuntos
Ecossistema , Meio Ambiente
19.
Glob Chang Biol ; 28(4): 1248-1267, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34735747

RESUMO

Freshwater ecosystems are strongly influenced by weather extremes such as heatwaves (HWs), which are predicted to increase in frequency and magnitude in the future. In addition to these climate extremes, the freshwater realm is impacted by the exposure to various classes of chemicals emitted by anthropogenic activities. Currently, there is limited knowledge on how the combined exposure to HWs and chemicals affects the structure and functioning of freshwater ecosystems. Here, we review the available literature describing the single and combined effects of HWs and chemicals on different levels of biological organization, to obtain a holistic view of their potential interactive effects. We only found a few studies (13 out of the 61 studies included in this review) that investigated the biological effects of HWs in combination with chemical pollution. The reported interactive effects of HWs and chemicals varied largely not only within the different trophic levels but also depending on the studied endpoints for populations or individuals. Hence, owing also to the little number of studies available, no consistent interactive effects could be highlighted at any level of biological organization. Moreover, we found an imbalance towards single species and population experiments, with only five studies using a multitrophic approach. This results in a knowledge gap for relevant community and ecosystem level endpoints, which prevents the exploration of important indirect effects that can compromise food web stability. Moreover, this knowledge gap impairs the validity of chemical risk assessments and our ability to protect ecosystems. Finally, we highlight the urgency of integrating extreme events into multiple stressors studies and provide specific recommendations to guide further experimental research in this regard.


Assuntos
Ecossistema , Água Doce , Humanos
20.
Sci Total Environ ; 806(Pt 2): 150678, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592290

RESUMO

Cyclophosphamide (CP) is a chemotherapy drug which is widely used in the treatment of neoplastic diseases and have often been detected in urban and hospital wastewater, and surface waters. However, at present the effects of CP on aquatic organisms and ecosystems are poorly understood. The main objective of the present study was to assess the effect of CP on the structure and functioning of a sub-tropical freshwater ecosystem (macroinvertebrates, zooplankton and phytoplankton) at environmental relevant concentrations. CP (0, 0.5, 5 and 50 µg/L) was applied weekly to 13,600 L mesocosms over a period of four weeks followed by a one month post exposure period. CP was found to dissipate much faster than previous reported in literature and the half-dissipation times were treatment dependent, being 2.2, 21.3 and 23.6 days in the lowest, middle and highest treatments respectively. Only treatment related effects were observed on the community structure at individual samplings with zooplankton (NOECcommunity = 0.5 µg/L) responding at lower concentrations than phytoplankton (NOECcommunity = 5 µg/L) and macroinvertebrates (NOECcommunity ≥ 50 µg/L). The dissolved organic carbon concentration was consistently higher in the 2 highest treatments, indicating a potential effect on food web interactions and/or the microbial loop. At the population level, consistent adverse effects were observed for the plankton taxa Pleuroxus laevis, Dissotrocha sp. and Oscillatoria sp. at all CP concentrations (NOEC <0.5 µg/L). Additionally, at the highest CP treatments 7% of all the taxa showed a clear short-term adverse effect. Based on comparison with literature data it can be concluded that these taxa have the highest CP sensitivity ever recorded and these findings indicate a potential CP risk to aquatic ecosystems at environmental relevant concentrations.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Ciclofosfamida/toxicidade , Ecossistema , Água Doce , Fitoplâncton , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zooplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...