Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546869

RESUMO

Sphingomyelin (SM) is a major component of mammalian cell membranes and particularly abundant in the myelin sheath that surrounds nerve fibers. Its production is catalyzed by SM synthases SMS1 and SMS2, which interconvert phosphatidylcholine and ceramide to diacylglycerol and SM in the Golgi and at the plasma membrane, respectively. As the lipids participating in this reaction fulfill both structural and signaling functions, SMS enzymes have considerable potential to influence diverse important cellular processes. The nematode Caenorhabditis elegans is an attractive model for studying both animal development and human disease. The organism contains five SMS homologues but none of these have been characterized in any detail. Here, we carried out the first systematic analysis of SMS family members in C. elegans . Using heterologous expression systems, genetic ablation, metabolic labeling and lipidome analyses, we show that C. elegans harbors at least three distinct SM synthases and one ceramide phosphoethanolamine (CPE) synthase. Moreover, C. elegans SMS family members have partially overlapping but also unique subcellular distributions and together occupy all principal compartments of the secretory pathway. Our findings shed light on crucial aspects of sphingolipid metabolism in a valuable animal model and opens avenues for exploring the role of SM and its metabolic intermediates in organismal development.

2.
J Control Release ; 343: 338-346, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104571

RESUMO

The size of polymeric micelles crucially affects their tumor accumulation, penetration and antitumor efficacy. In the present study, micelles were formed based on amphiphilic poly(N-2-hydroxypropyl methacrylamide)-block-poly(N-2-benzoyloxypropyl methacrylamide) (p(HPMAm)-b-p(HPMAm-Bz)) via the solvent extraction method, and factors impacting micelle size were systematically studied, including the molecular weight of the polymers, homopolymer content, and processing methods (i.e., batch process versus continuous microfluidics). The formation of core-shell structured micelles was demonstrated by light scattering, sedimentation velocity and electron microscopy analysis. Micellar size and aggregation number increased with decreasing the molecular weight ratio of the hydrophilic/hydrophobic block. The presence of hydrophobic p(HPMAm-Bz) homopolymer and high copolymer concentration increased micelle size, while the presence of hydrophilic p(HPMAm) homopolymer did not affect micellar size. Regarding processing conditions, it was found that the use of tetrahydrofuran and acetone as solvents for the polymers resulted in larger micelles, likely due to their relatively high water-solvent interaction parameters as compared to other solvents tested, i.e., dimethylformamide, dimethylacetamide, and dimethyl sulfoxide. Among the latter, only dimethylformamide led to micelles with a narrow polydispersity. Addition of dimethylformamide to an aqueous solvent and faster mixing of two solvents using microfluidics favored the formation of smaller micelles. In conclusion, our results show that the size of all-HPMA polymeric micelles can be easily tailored from 40 to 120 nm by varying the formulation properties and processing parameters.


Assuntos
Dimetilformamida , Micelas , Metacrilatos , Polietilenoglicóis/química , Polímeros/química , Solventes
3.
Pharmaceutics ; 13(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34959304

RESUMO

The aim of this study was to get insight into the internalization and transport of PEGylat-ed mixed micelles loaded by vitamin K, as mediated by Scavenger Receptor B1 (SR-B1) that is abundantly expressed by intestinal epithelium cells as well as by differentiated Caco-2 cells. Inhibition of SR-B1 reduced endocytosis and transport of vitamin-K-loaded 0%, 30% and 50% PEGylated mixed micelles and decreased colocalization of the micelles with SR-B1. Confocal fluorescence microscopy, fluorescence-activated cell sorting (FACS) analysis, and surface plasmon resonance (SPR) were used to study the interaction between the mixed micelles of different compositions (varying vitamin K loading and PEG content) and SR-B1. Interaction of PEGylated micelles was independent of the vitamin K content, indicating that the PEG shell prevented vitamin K exposure at the surface of the micelles and binding with the receptor and that the PEG took over the micelles' ability to bind to the receptor. Molecular docking calculations corroborated the dual binding of both vita-min K and PEG with the binding domain of SR-B1. In conclusion, the improved colloidal stability of PEGylated mixed micelles did not compromise their cellular uptake and transport due to the affinity of PEG for SR-B1. SR-B1 is able to interact with PEGylated nanoparticles and mediates their subsequent internalization and transport.

4.
Biomacromolecules ; 21(5): 1739-1751, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31945299

RESUMO

In this study, a new type of injectable hydrogel called "HyMic" that can convert into core cross-linked (CCL) micelles upon exposure to matrix metalloproteinases (MMP's), was designed and developed for drug delivery applications. HyMic is composed of CCL micelles connected via an enzyme cleavable linker. To this end, two complementary ABA block copolymers with polyethylene glycol (PEG) as B block were synthesized using atom transfer radical polymerization (ATRP). The A blocks were composed of a random copolymer of N-isopropylacrylamide (NIPAM) and either N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys) or N-(2-hydroxypropyl) methacrylamide-ethylthioglycolate succinic acid (HPMA-ETSA). Mixing the aqueous solutions of the obtained polymers and rising the temperature above the cloud point of the PNIPAM block resulted in the self-assembly of these polymers into flower-like micelles composed of a hydrophilic PEG shell and hydrophobic core. The micellar core was cross-linked by native chemical ligation between the cysteine (in HPMA-Cys) and thioester (in HPMA-ETSA) functionalities. A slight excess of thioester to cysteine groups (molar ratio 3:2) was used to allow further chemical reactions exploiting the unreacted thioester groups. The obtained micelles displayed a Z-average diameter of 80 ± 1 nm (PDI 0.1), and ζ-potential of -4.2 ± 0.4 mV and were linked using two types of pentablock copolymers of P(NIPAM-co-HPMA-Cys)-PEG-peptide-PEG-P(NIPAM-co-HPMA-Cys) (Pep-NC) to yield hydrogels. The pentablock copolymers were synthesized using a PEG-peptide-PEG ATRP macroinitiator and the peptide midblock (lysine-glycine-proline-glutamine-isoleucine-phenylalanine-glycine-glutamine-lysine (Lys-Gly-Pro-Gln-Gly-Ile-Phe-Gly-Gln-Lys)) consisted of either l- or d-amino acids (l-Pep-NC or d-Pep-NC), of which the l-amino acid sequence is a substrate for matrix metalloproteases 2 and 9 (MMPs 2 and 9). Upon mixing of the CCL micelles and the linker (l/d-Pep-NC), the cysteine functionalities of the l/d-Pep-NC reacted with remaining thioester moieties in the micellar core via native chemical ligation yielding a hydrogel within 160 min as demonstrated by rheological measurements. As anticipated, the gel cross-linked with l-Pep-NC was degraded in 7-45 days upon exposure to metalloproteases in a concentration-dependent manner, while the gel cross-linked with the d-Pep-NC remained intact even after 2 months. Dynamic light scattering analysis of the release medium revealed the presence of nanoparticles with a Z-average diameter of ∼120 nm (PDI < 0.3) and ζ-potential of ∼-3 mV, indicating release of core cross-linked micelles upon HyMic exposure to metalloproteases. An in vitro study demonstrated that the released CCL micelles were taken up by HeLa cells. Therefore, HyMic as an injectable and enzyme degradable hydrogel displaying controlled and on-demand release of CCL micelles has potential for intracellular drug delivery in tissues with upregulation of MMPs, for example, in cancer tissues.


Assuntos
Hidrogéis , Micelas , Células HeLa , Humanos , Metaloproteinases da Matriz , Polietilenoglicóis
5.
Commun Chem ; 3(1): 164, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36703336

RESUMO

Self-assembling peptides are an exemplary class of supramolecular biomaterials of broad biomedical utility. Mechanistic studies on the peptide self-assembly demonstrated the importance of the oligomeric intermediates towards the properties of the supramolecular biomaterials being formed. In this study, we demonstrate how the overall yield of the supramolecular assemblies are moderated through subtle molecular changes in the peptide monomers. This strategy is exemplified with a set of surfactant-like peptides (SLPs) with different ß-sheet propensities and charged residues flanking the aggregation domains. By integrating different techniques, we show that these molecular changes can alter both the nucleation propensity of the oligomeric intermediates and the thermodynamic stability of the fibril structures. We demonstrate that the amount of assembled nanofibers are critically defined by the oligomeric nucleation propensities. Our findings offer guidance on designing self-assembling peptides for different biomedical applications, as well as insights into the role of protein gatekeeper sequences in preventing amyloidosis.

7.
J Control Release ; 317: 154-165, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31765703

RESUMO

Small, synthetic oligonucleotides (ON) are of great interest as potential disease modifying drugs, mainly because of their ability to modulate previously undruggable target mutations. To date, therapeutic applications of ON are, however, limited by their physicochemical properties, including poor stability, rapid excretion and low intracellular access. In order to overcome some of these shortcomings, ON are generally formulated using nanoparticle (NP) delivery systems. Alternatively, the poor stability can be circumvented by including chemical modifications to the backbone or sugars of the ON. Some of these modifications also result in better intracellular target access of these otherwise membrane-impermeable macromolecules. Therefore, complex formulation of ON into NP in order to overcome the hurdle of intracellular access might not always be needed, especially in case of local delivery. In this study, the delivery and functionality of chemically modified ON in free form was compared to polymeric NP assisted delivery, measuring their effectivity and efficiency. For this reason, phosphorothioate (PS) backbone-modified 18-mer ON with either 2'OMe or 2'MOE-modifications were selected, capable of eliciting exon-skipping of an aberrant exon in fluorescence based in vitro and in vivo model systems. The NP consisted of poly(D,L-lactic,co-glycolic acid) and poly-ß-amino-ester, previously demonstrated to successfully deliver nucleic acids via the pulmonary route. Several NP formulation parameters were tested in order to optimize the delivery of the ON, including ratio polymer:ON, NP size and concentration. The results reported here show clear differences between gymnotic and nanoparticle mediated ON delivery in terms of cellular uptake and local tissue distribution. In vitro, differences in exon-skipping efficiencies were observed with 2'OMe and 2'MOE ON either in free form or formulated in NP, with the striking observation that 2'OMe ON formulated in polymeric NP did not result in exon skipping. Gymnotic delivery of 2'MOE ON into the respiratory tract of mice resulted in functional delivery of exon-skipping ON into nasal epithelia and lungs as well as other downstream tissues and organs, pointing towards a gradual redistribution of locally delivered ONs, with limited but measurable systemic exposure. Conversely, NP-mediated delivery into the respiratory tract resulted in a more contained functional delivery at 10× lower ON doses compared to gymnotic delivery. Based on these findings we conclude that gymnotic delivery of 2'OMe or 2'MOE exon-skipping ON to the respiratory tract is effective, but that NP formulation might be advantageous in case spread of ON to non-target tissue can lead to undesired effects.


Assuntos
Nanopartículas , Ácidos Nucleicos , Animais , Camundongos , Oligonucleotídeos , RNA , Sistema Respiratório
8.
Pharmaceutics ; 11(2)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795565

RESUMO

The major challenge in the therapeutic applicability of oligonucleotide-based drugs is the development of efficient and safe delivery systems. The carriers should be non-toxic and stable in vivo, but interact with the target cells and release the loaded oligonucleotides intracellularly. We approached this challenge by developing a light-triggered liposomal delivery system for oligonucleotides based on a non-cationic and thermosensitive liposome with indocyanine green (ICG) as photosensitizer. The liposomes had efficient release properties, as 90% of the encapsulated oligonucleotides were released after 1-minute light exposure. Cell studies using an enhanced green fluorescent protein (EGFP)-based splicing assay with HeLa cells showed light-activated transfection with up to 70%⁻80% efficacy. Moreover, free ICG and oligonucleotides in solution transfected cells upon light induction with similar efficacy as the liposomal system. The light-triggered delivery induced moderate cytotoxicity (25%⁻35% reduction in cell viability) 1⁻2 days after transfection, but the cell growth returned to control levels in 4 days. In conclusion, the ICG-based light-triggered delivery is a promising method for oligonucleotides, and it can be used as a platform for further optimization and development.

10.
ACS Macro Lett ; 7(11): 1394-1399, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30533279

RESUMO

Herein we describe biodegradable nanovectors comprised of block copolymers of poly(ethylene glycol) and poly(trimethylene carbonate) (PEG-PTMC) that change their morphology and surface charge when exposed to tumor environment conditions. Well-defined, drug-loaded nanovectors were prepared via direct hydration using liquid oligo(ethylene glycol) as a dispersant. Systematic introduction of basic imidazole-functional TMC derivatives, through modular polymerization, resulted in polymers that self-assembled in multilamellar nanoparticles (at neutral pH) and that were loaded with hydrophobic drugs. The resultant multilamellar nanovectors demonstrated a significant size reduction and charge reversal at pH ≈ 6.5, which yielded cationic nanovectors that were tailored for tumor penetration. In vitro studies using 3D heterospheroids demonstrate that this platform has excellent potential to promote enhanced tumor penetration under physiological conditions.

11.
Mol Pharm ; 15(9): 3786-3795, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30063364

RESUMO

The aim of the study is to investigate the uptake by and transport through Caco-2 cells of two mixed micelle formulations (based on egg phosphatidylcholine and glycocholic acid) of vitamin K, i.e., with and without DSPE-PEG2000. The uptake of vitamin K and fluorescently labeled mixed micelles with and without PEG coating showed similar kinetics and their uptake ratio remained constant over time. Together with the fact that an inhibitor of scavenger receptor B1 (BLT-1) decreased cellular uptake of vitamin K by ∼80% compared to the uptake in the absence of this inhibitor, we conclude that both types of micelles loaded with vitamin K can be taken up intactly by Caco-2 cells via this scavenger receptor. The amount of vitamin K in chylomicrons fraction from Caco-2 cell monolayers further indicates that mixed micelles (with or without PEGylation) are likely packed into chylomicrons after internalization by Caco-2 cells. Uptake of vitamin K from PEGylated mixed micelles increased four- to five-fold at simulated gastrointestinal conditions. In conclusion, PEGylated mixed micelles are stable upon exposure to simulated gastric conditions, and as a result, they do show overall a higher cellular uptake efficiency of vitamin K as compared to mixed micelles without PEG coating.


Assuntos
Micelas , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Vitamina K/química , Vitamina K/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Receptores Depuradores Classe B/metabolismo
12.
Biomacromolecules ; 19(9): 3766-3775, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30102855

RESUMO

In this study, native chemical ligation (NCL) was used as a selective cross-linking method to form core-cross-linked thermosensitive polymeric micelles for drug delivery applications. To this end, two complementary ABA triblock copolymers having polyethylene glycol (PEG) as midblock were synthesized by atom transfer radical polymerization (ATRP). The thermosensitive poly isopropylacrylamide (PNIPAM) outer blocks of the polymers were copolymerized with either N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys), P(NIPAM- co-HPMA-Cys)-PEG-P(NIPAM- co-HPMA-Cys) (PNC) or N-(2-hydroxypropyl)methacrylamide-ethylthioglycolate succinic acid (HPMA-ETSA), P(NIPAM- co-HPMA-ETSA)-PEG-P(NIPAM- co-HPMA-ETSA) (PNE). Mixing of these polymers in aqueous solution followed by heating to 50 °C resulted in the formation of thermosensitive flower-like micelles. Subsequently, native chemical ligation in the core of micelles resulted in stabilization of the micelles with a Z-average of 65 nm at body temperature. Decreasing the temperature to 10 °C only affected the size of the micelles (increased to 90 nm) but hardly affected the polydispersity index (PDI) and aggregation number ( Nagg) confirming covalent stabilization of the micelles by NCL. CryoTEM images showed micelles with an uniform spherical shape and dark patches close to the corona of micelles were observed in the tomographic view. The dark patches represent more dense areas in the micelles which coincide with the higher content of HPMA-Cys/ETSA close to the PEG chain revealed by the polymerization kinetics study. Notably, this cross-linking method provides the possibility for conjugation of functional molecules either by using the thiol moieties still present after NCL or by simply adjusting the molar ratio between the polymers (resulting in excess cysteine or thioester moieties) during micelle formation. Furthermore, in vitro cell experiments demonstrated that fluorescently labeled micelles were successfully taken up by HeLa cells while cell viability remained high even at high micelle concentrations. These results demonstrate the potential of these micelles for drug delivery applications.


Assuntos
Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/síntese química , Micelas , Resinas Acrílicas/química , Células HeLa , Humanos , Metacrilatos/química , Polietilenoglicóis/química , Coroa de Proteína/química , Temperatura , Tioglicolatos/química
13.
Int J Pharm ; 550(1-2): 190-199, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30130606

RESUMO

Thermosensitive liposomes grafted with cholesterol-conjugated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) (chol-pHPMAlac) have been developed for heat-induced release of doxorubicin (DOX). These liposomes release DOX completely during mild hyperthermia, but their interaction with blood cells and cancer cells has not been studied. Following intravenous administration, liposomes may interact with plasma proteins and various types of cells (e.g., endothelial cells, platelets, and macrophages), which would reduce their disposition in the tumor stroma. Interaction between liposomes and platelets may further cause platelet activation and thrombosis, which could lead to vascular occlusion and thromboembolic complications. The aim was to investigate DOX release kinetics in the presence of serum, stability, in vitro uptake by and toxicity to cancer cells and somatic cells, and platelet activating potential of the chol-pHPMAlac liposomes. DOX release was determined spectrofluorometrically. Liposome stability was determined in buffer and serum by dynamic light scattering and nanoparticle tracking analysis. Association with/uptake by and toxicity of empty liposomes to AML-12, HepG2 (both hepatocyte-derived cancer cells), RAW 264.7 (macrophages), and HUVEC (endothelial) cells was assayed in vitro. Platelet activation was determined by analysis of P-selectin expression and fibrinogen binding. DOPE:EPC liposomes (diameter = 135 nm) grafted with 5% chol-pHPMAlac (cloud point (CP) = 16 °C; Mn = 8.5 kDa) released less than 10% DOX at 37 °C in 30 min, whereas complete release took place at 47 °C or higher within 10 min. The size of these liposomes remained stable in buffer and serum during 24 h at 37 °C. Fluorescently labeled but DOX-lacking chol-pHPMAlac-liposomes exhibited poor association with/uptake by all cells under investigation, were not cytotoxic, and did not activate platelets in both buffered solution and whole blood. In conclusion, thermosensitive chol-pHPMAlac-grafted liposomes rapidly release DOX during mild hyperthermia. The liposomes are stable in a physiological milieu, are not taken up by cells that are encountered in an in vivo setting, and are non-antagonistic towards platelets. Chol-pHPMAlac-grafted liposomes are therefore good candidates for DOX delivery to tumors and temperature-triggered release in tumor stroma.


Assuntos
Acrilamidas , Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Hipertermia Induzida , Lactatos , Lipossomos , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipertermia Induzida/métodos , Lipossomos/química , Camundongos , Neoplasias/tratamento farmacológico
14.
Biomacromolecules ; 19(7): 2841-2848, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29750866

RESUMO

Ultrasmall gold atom clusters (<2 nm in diameter) or gold nanoclusters exhibit emergent photonic properties (near-infrared absorption and emission) compared to larger plasmonic gold particles because of the significant quantization of their conduction band. Although single gold nanocluster properties and applications are being increasingly investigated, little is still known about their behavior and properties when assembled into suprastructures, and even fewer studies are investigating their use for biomedical applications. Here, a simple synthetic pathway combines gold nanoclusters with thermosensitive diblock copolymers of poly(ethylene glycol) (PEG) and poly( N-isopropylacrylamide) (PNIPAm) to form a new class of gold-polymer, micelle-forming, hybrid nanoparticle. The nanohybrids' design is uniquely centered on enabling the temperature-dependent self-assembly of gold nanoclusters into the hydrophobic cores of micelles. This nonbulk assembly not only preserves but also enhances the attractive near-infrared photonics of the gold nanoclusters by significantly increasing their native fluorescent signal. In parallel to the fundamental insights into gold nanocluster ordering and assembly, the gold-polymer nanohybrids also demonstrated great potential as fluorescent live-imaging probes in vitro. This innovative material design based on the temperature-dependent, self-assembly of gold nanoclusters within a polymeric micelle's core shows great promise toward bioassays, nanosensors, and nanomedicine.


Assuntos
Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Resinas Acrílicas/química , Ouro/química , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Polietilenoglicóis/química , Polimerização
15.
Eur J Pharm Sci ; 107: 112-125, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28679107

RESUMO

Selective elimination of macrophages by photodynamic therapy (PDT) is a new and promising therapeutic modality for the reduction of atherosclerotic plaques. m-Tetra(hydroxyphenyl)chlorin (mTHPC, or Temoporfin) may be suitable as photosensitizer for this application, as it is currently used in the clinic for cancer PDT. In the present study, mTHPC was encapsulated in polymeric micelles based on benzyl-poly(ε-caprolactone)-b-methoxy poly(ethylene glycol) (Ben-PCL-mPEG) using a film hydration method, with loading capacity of 17%. Because of higher lipase activity in RAW264.7 macrophages than in C166 endothelial cells, the former cells degraded the polymers faster, resulting in faster photosensitizer release and higher in vitro photocytotoxicity of mTHPC-loaded micelles in those macrophages. However, we observed release of mTHPC from the micelles in 30min in blood plasma in vitro which explains the observed similar in vivo pharmacokinetics of the mTHPC micellar formulation and free mTHPC. Therefore, we could not translate the beneficial macrophage selectivity from in vitro to in vivo. Nevertheless, we observed accumulation of mTHPC in atherosclerotic lesions of mice aorta's which is probably the result of binding to lipoproteins upon release from the micelles. Therefore, future experiments will be dedicated to increase the stability and thus allow accumulation of intact mTHPC-loaded Ben-PCL-mPEG micelles to macrophages of atherosclerotic lesions.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Mesoporfirinas/administração & dosagem , Micelas , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Doenças Cardiovasculares/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Feminino , Luz , Mesoporfirinas/sangue , Mesoporfirinas/farmacocinética , Mesoporfirinas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Nus , Fotoquimioterapia , Fármacos Fotossensibilizantes/sangue , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/uso terapêutico , Poliésteres/administração & dosagem , Poliésteres/farmacocinética , Poliésteres/uso terapêutico , Células RAW 264.7 , Oxigênio Singlete/química , Distribuição Tecidual
16.
Int J Pharm ; 525(2): 388-396, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28336456

RESUMO

The success of siRNA gene therapy requires the availability of safe and efficient delivery systems. In the present study, we investigated poly(vinyl benzyl trimethylammonium chloride) (PVTC) and its block copolymer with poly(oligo(ethyleneglycol) methacrylate) (POEGMA) as delivery vector for siRNA. Small polyplexes ranging from 8 to 25nm in diameter were formed in aqueous solution by spontaneous self-assembly of both the homopolymer and block copolymer with siRNA and the formed particles were stable at physiological ionic strength. It was shown that when human ovarian adenocarcinoma cells were transfected, siRNA polyplexes based on PVTC (40kDa) and PVTC-POEGMA-4 (PP4, 34kDa) efficiently induced luciferase gene silencing to the same extent as the formulation based on a commercial lipid (Lipofectamine®) (∼80%), and showed higher gene silencing than the linear polyethylenimine formulation linear polyethylenimine (∼35%). Importantly, the POEGMA block polymers displayed a significantly lower cytotoxicity as compared to L-pEI. siRNA polyplexes based on the block polymers displayed high cellular uptake resulting in ∼50% silencing of luciferase expression also in the presence of serum. These results demonstrate that PVTC-based polymers are promising siRNA delivery vectors.


Assuntos
Inativação Gênica , Terapia Genética/métodos , Poliestirenos/química , Compostos de Amônio Quaternário/química , RNA Interferente Pequeno/administração & dosagem , Adenocarcinoma/genética , Adenocarcinoma/terapia , Linhagem Celular Tumoral , Humanos , Polímeros , Transfecção
17.
Nanoscale ; 8(47): 19592-19604, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27748778

RESUMO

Cancer vaccines are at present mostly based on tumor associated protein antigens but fail to elicit strong cell-mediated immunity in their free form. For protein-based vaccines, the main challenges to overcome are the delivery of sufficient proteins into the cytosol of dendritic cells (DCs) and processing by, and presentation through, the MHC class I pathway. Recently, we developed a cationic dextran nanogel in which a model antigen (ovalbumin, OVA) is reversibly conjugated via disulfide bonds to the nanogel network to enable redox-sensitive intracellular release. In the present study, it is demonstrated that these nanogels, with the bound OVA, were efficiently internalized by DCs and were capable of maturating them. On the other hand, when the antigen was just physically entrapped in the nanogels, OVA was prematurely released before the particles were taken up by cells. When combined with an adjuvant (polyinosinic-polycytidylic acid, poly(I:C)), nanogels with conjugated OVA induced a strong protective and curative effect against melanoma in vivo. In a prophylactic vaccination setting, 90% of the mice vaccinated with nanogels with conjugated OVA + poly(I:C) did not develop a tumor. Moreover, in a therapeutic model, 40% of the mice showed clearance of established tumors and survived for the duration of the experiment (80 days) while the remaining mice showed substantial delay in tumor progression. In conclusion, our results demonstrate that conjugation of antigens to nanogels via reducible covalent bonds for intracellular delivery is a promising strategy to induce effective antigen-specific immune responses against cancer.


Assuntos
Apresentação de Antígeno , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Nanopartículas , Animais , Linhagem Celular Tumoral , Feminino , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Ovalbumina/imunologia
18.
Nanoscale ; 8(16): 8955-65, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27073992

RESUMO

Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner.


Assuntos
Lipossomos/administração & dosagem , Lipossomos/química , Ácidos Nucleicos/administração & dosagem , Sequência de Aminoácidos , Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos , Endocitose , Células HeLa , Humanos , Nanotecnologia , Ácidos Nucleicos/farmacocinética , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Domínios e Motivos de Interação entre Proteínas
19.
Biomacromolecules ; 16(9): 2840-51, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26237583

RESUMO

Chemoselectively cross-linked hydrogels have recently gained increasing attention for the development of novel, injectable biomaterials given their limited side reactions. In this study, we compared the properties of hydrogels obtained by native chemical ligation (NCL) and its recently described variation termed oxo-ester-mediated native chemical ligation (OMNCL) in combination with temperature-induced physical gelation. Triblock copolymers consisting of cysteine functionalities, thermoresponsive N-isopropylacrylamide (NIPAAm) units and degradable moieties were mixed with functionalized poly(ethylene glycol) (PEG) cross-linkers. Thioester or N-hydroxysuccinimide (NHS) functionalities attached to PEG reacted with cysteine residues of the triblock copolymers via either an NCL or OMNCL pathway. The combined physical and chemical cross-linking resulted in rapid network formation and mechanically strong hydrogels. Stiffness of the hydrogels was highest for thermogels that were covalently linked via OMNCL. Specifically, the storage modulus after 4 h reached a value of 26 kPa, which was over a 100 times higher than hydrogels formed by solely thermal physical interactions. Endothelial cells showed high cell viability of 98 ± 2% in the presence of OMNCL cross-linked hydrogels after 16 h of incubation, in contrast to a low cell viability (13 ± 7%) for hydrogels obtained by NCL cross-linking. Lysozyme was loaded in the gels and after 2 days more than 90% was released, indicating that the cross-linking reaction was indeed chemoselective as the protein was not covalently grafted to the hydrogel network. Moreover, the degradation rates of these hydrogels under physiological conditions could be tailored from 12 days up to 6 months by incorporation of a monomer containing a hydrolyzable lactone ring in the thermosensitive triblock copolymer. These results demonstrate a high tunability of mechanical properties and degradation rates of these in situ forming hydrogels that could be used for a variety of biomedical applications.


Assuntos
Acrilamidas/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/química , Teste de Materiais , Polietilenoglicóis/química , Animais , Linhagem Celular , Camundongos
20.
Mol Pharm ; 12(1): 150-61, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25384057

RESUMO

The applicability of small interfering RNA (siRNA) in future therapies depends on the availability of safe and efficient carrier systems. Ideally, siRNA delivery requires a system that is stable in the circulation but upon specific uptake into target cells can rapidly release its cargo into the cytoplasm. Previously, we evaluated a novel generation of carrier systems ("decationized" polyplexes) for DNA delivery, and it was shown that folate targeted decationized polyplexes had an excellent safety profile and showed intracellular triggered release upon cell specific uptake. Targeted decationized polyplexes consist of a core of disulfide cross-linked poly(hydroxypropyl methacrylamide) (pHPMA) stably entrapping nucleic acids and a shell of poly(ethylene glycol) (PEG) decorated with folate molecules. In the present study, the applicability of folate targeted decationized polyplexes for siRNA delivery was investigated. This required optimization of the carrier system particularly regarding the cross-linking density of the core of the polyplexes. Stable and nanosized siRNA decationized polyplexes were successfully prepared by optimizing the cross-link density of their core. Upon incubation in human plasma, a significant portion of siRNA remained entrapped in the decationized polyplexes as determined by fluorescence correlation spectroscopy (FCS). When tested in a folate receptor overexpressing cell line stably expressing luciferase, Skov3-luc, sequence specific gene silencing was observed. As expected, neither interference on the intrinsic luciferase expression nor on the cell metabolic activity (determined by XTT) was induced by the free-polymer or the siRNA polyplexes. In conclusion, targeted decationized polyplexes are safe and stable carriers that interact with the targeted cells and rapidly disassemble upon cell entry making them promising siRNA delivery systems.


Assuntos
Técnicas de Transferência de Genes , Metacrilatos/química , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Materiais Biocompatíveis/química , Linhagem Celular Tumoral , Ácido Fólico/química , Inativação Gênica , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Nanotecnologia , Ácidos Nucleicos/química , Polietilenoglicóis/química , Polímeros/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...