Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
SLAS Technol ; 28(5): 293-301, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454764

RESUMO

Pharma 4.0 is a digital evolution of the pharmaceutical industry that automates scientists' traditional workflows with the implementation of modern technologies like cloud pipelines, artificial intelligence, robotic platforms, and augmented reality. Lab data capture (LDC) is an essential strategy for initiating Pharma 4.0 that aggregates and harmonizes siloed lab data from analytical instruments, reporting systems, and operational platforms. This publication describes the execution of LDC within a quantitative PCR (qPCR) workflow using the Tetra Data Platform (TDP). We selected this workflow because the qPCR instrument, the ViiA7, generates discrete file-based data that documents execution of individual assays for quantifying residual DNA throughout biologics process development and product profiling. TDP executes LDC through the deployment of file scanning software agents, scanning and ingestion processes, and a cloud-based parsing pipeline that harmonizes source data. Web applications were developed to query, visualize, and interpret harmonized qPCR data for automated experiment data processing and process control charting from the TDP platform. Our implementation of LDC enables analytical researchers to harness FAIR (Findable, Accessible, Interoperable, Reproducible) data practices across the organization and establishes a "compliance-by-code" culture in development labs.

2.
J Mater Chem B ; 8(33): 7413-7427, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32661544

RESUMO

The impact of next-generation biorecognition elements (ligands) will be determined by the ability to remotely control their binding activity for a target biomolecule in complex environments. Compared to conventional mechanisms for regulating binding affinity (pH, ionic strength, or chaotropic agents), light provides higher accuracy and rapidity, and is particularly suited for labile targets. In this study, we demonstrate a general method to develop azobenzene-cyclized peptide ligands with light-controlled affinity for target proteins. Light triggers a cis/trans isomerization of the azobenzene, which results in a major structural rearrangement of the cyclic peptide from a non-binding to a binding configuration. Critical to this goal are the ability to achieve efficient photo-isomerization under low light dosage and the temporal stability of both cis and trans isomers. We demonstrated our method by designing photo-switchable peptides targeting vascular cell adhesion marker 1 (VCAM1), a cell marker implicated in stem cell function. Starting from a known VCAM1-binding linear peptide, an ensemble of azobenzene-cyclized variants with selective light-controlled binding were identified by combining in silico design with experimental characterization via spectroscopy and surface plasmon resonance. Variant cycloAZOB[G-VHAKQHRN-K] featured rapid, light-controlled binding of VCAM1 (KD,trans/KD,cis ∼ 130). Biotin-cycloAZOB[G-VHAKQHRN-K] was utilized to label brain microvascular endothelial cells (BMECs), showing co-localization with anti-VCAM1 antibodies in cis configuration and negligible binding in trans configuration.


Assuntos
Compostos Azo/química , Peptídeos Cíclicos/química , Processos Fotoquímicos , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Isomerismo , Concentração Osmolar
3.
J Chromatogr A ; 1625: 461237, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709313

RESUMO

The quest for ligands alternative to Protein A for the purification of monoclonal antibodies (mAbs) has been pursued for almost three decades. Yet, the IgG-binding peptides known to date still fall short of the host cell protein (HCP) logarithmic removal value (LRV) set by Protein A media (2.5-3.1). In this study, we present an integrated computational-experimental approach leading to the discovery of peptide ligands that provide HCP LRVs on par with Protein A. First, the screening of 60,000 peptide variants was performed using a high-throughput search algorithm to identify sequences that ensure IgG affinity binding. Select sequences WQRHGI, MWRGWQ, RHLGWF, and GWLHQR were then negatively screened in silico against a panel of model HCPs to ensure the selection of peptides with high binding selectivity. Candidate ligands WQRHGI and MWRGWQ were conjugated to chromatographic resins and characterized by isothermal binding and breakthrough assays to quantify static and dynamic binding capacity (Qmax and DBC10%), respectively. The resulting Qmax were 52.6 mg of IgG per mL of adsorbent for WQRHGI and 57.48 mg/mL for MWRGWQ, while the DBC10% (2 minutes residence time) were 30.1 mg/mL for WQRHGI and 36.4 mg/mL for MWRGWQ. Evaluation of the peptides by isothermal titration calorimetry (ITC) confirmed the binding energy predicted in silico, and an amino acid scanning study corroborated the affinity-like binding activity of the peptides. WQRHGI-WorkBeads resin was finally characterized by purification of a monoclonal antibody from a Chinese Hamster Ovary (CHO) cell culture harvest, affording a remarkable HCP LRV of 2.7, and consistent product yield and purity over 100 chromatographic cycles. These results demonstrate the potential of WQRHGI as an effective alternative to Protein A for antibody purification.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Peptídeos/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetinae , Cricetulus , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Ligantes , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
4.
Nat Med ; 24(9): 1342-1350, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104768

RESUMO

The volume and complexity of diagnostic imaging is increasing at a pace faster than the availability of human expertise to interpret it. Artificial intelligence has shown great promise in classifying two-dimensional photographs of some common diseases and typically relies on databases of millions of annotated images. Until now, the challenge of reaching the performance of expert clinicians in a real-world clinical pathway with three-dimensional diagnostic scans has remained unsolved. Here, we apply a novel deep learning architecture to a clinically heterogeneous set of three-dimensional optical coherence tomography scans from patients referred to a major eye hospital. We demonstrate performance in making a referral recommendation that reaches or exceeds that of experts on a range of sight-threatening retinal diseases after training on only 14,884 scans. Moreover, we demonstrate that the tissue segmentations produced by our architecture act as a device-independent representation; referral accuracy is maintained when using tissue segmentations from a different type of device. Our work removes previous barriers to wider clinical use without prohibitive training data requirements across multiple pathologies in a real-world setting.


Assuntos
Aprendizado Profundo , Encaminhamento e Consulta , Doenças Retinianas/diagnóstico , Idoso , Tomada de Decisão Clínica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Retina/diagnóstico por imagem , Retina/patologia , Doenças Retinianas/diagnóstico por imagem , Tomografia de Coerência Óptica
5.
J Cheminform ; 10(1): 3, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29383457

RESUMO

BACKGROUND: Idiosyncratic adverse drug reactions have been linked to a drug's ability to bind with a human leukocyte antigen (HLA) protein. However, due to the thousands of HLA variants and limited structural data for drug-HLA complexes, predicting a specific drug-HLA combination represents a significant challenge. Recently, we investigated the binding mode of abacavir with the HLA-B*57:01 variant using molecular docking. Herein, we developed a new ensemble screening workflow involving three X-ray crystal derived docking procedures to screen the DrugBank database and identify potentially HLA-B*57:01 liable drugs. Then, we compared our workflow's performance with another model recently developed by Metushi et al., which proposed seven in silico HLA-B*57:01 actives, but were later found to be experimentally inactive. METHODS: After curation, there were over 6000 approved and experimental drugs remaining in DrugBank for docking using Schrodinger's GLIDE SP and XP scoring functions. Docking was performed with our new consensus-like ensemble workflow, relying on three different X-ray crystals (3VRI, 3VRJ, and 3UPR) in presence and absence of co-binding peptides. The binding modes of HLA-B*57:01 hit compounds for all three peptides were further explored using 3D interaction fingerprints and hierarchical clustering. RESULTS: The screening resulted in 22 hit compounds forecasted to bind HLA-B*57:01 in all docking conditions (SP and XP with and without peptides P1, P2, and P3). These 22 compounds afforded 2D-Tanimoto similarities being less than 0.6 when compared to the structure of native abacavir, whereas their 3D binding mode similarities varied in a broader range (0.2-0.8). Hierarchical clustering using a Ward Linkage revealed different clustering patterns for each co-binding peptide. When we docked Metushi et al.'s seven proposed hits using our workflow, our screening platform identified six out of seven as being inactive. Molecular dynamic simulations were used to explore the stability of abacavir and acyclovir in complex with peptide P3. CONCLUSIONS: This study reports on the extensive docking of the DrugBank database and the 22 HLA-B*57:01 liable candidates we identified. Importantly, comparisons between this study and the one by Metushi et al. highlighted new critical and complementary knowledge for the development of future HLA-specific in silico models.

6.
Nature ; 550(7676): 354-359, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29052630

RESUMO

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo's own move selections and also the winner of AlphaGo's games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.


Assuntos
Jogos Recreativos , Software , Aprendizado de Máquina não Supervisionado , Humanos , Redes Neurais de Computação , Reforço Psicológico , Aprendizado de Máquina Supervisionado
7.
J Cheminform ; 9: 13, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303164

RESUMO

BACKGROUND: Human leukocyte antigen (HLA) surface proteins are directly involved in idiosyncratic adverse drug reactions. Herein, we present a structure-based analysis of the common HLA-B*57:01 variant known to be responsible for several HLA-linked adverse effects such as the abacavir hypersensitivity syndrome. METHODS: First, we analyzed three X-ray crystal structures involving the HLA-B*57:01 protein variant, the anti-HIV drug abacavir, and different co-binding peptides present in the antigen-binding cleft. We superimposed the three complexes and showed that abacavir had no significant conformational variation whatever the co-binding peptide. Second, we self-docked abacavir in the HLA-B*57:01 antigen binding cleft with and without peptide using Glide. Third, we docked a small test set of 13 drugs with known ADRs and suspected HLA associations. RESULTS: In the presence of an endogenous co-binding peptide, we found a significant stabilization (~2 kcal/mol) of the docking scores and identified several modified abacavir-peptide interactions indicating that the peptide does play a role in stabilizing the HLA-abacavir complex. Next, our model was used to dock a test set of 13 drugs at HLA-B*57:01 and measured their predicted binding affinities. Drug-specific interactions were observed at the antigen-binding cleft and we were able to discriminate the compounds with known HLA-B*57:01 liability from inactives. CONCLUSIONS: Overall, our study highlights the relevance of molecular docking for evaluating and analyzing complex HLA-drug interactions. This is particularly important for virtual drug screening over thousands of HLA variants as other experimental techniques (e.g., in vitro HTS) and computational approaches (e.g., molecular dynamics) are more time consuming and expensive to conduct. As the attention for drugs' HLA liability is on the rise, we believe this work participates in encouraging the use of molecular modeling for reliably studying and predicting HLA-drug interactions. Graphical abstract.

8.
Nature ; 529(7587): 484-9, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26819042

RESUMO

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.


Assuntos
Jogos Recreativos , Redes Neurais de Computação , Software , Aprendizado de Máquina Supervisionado , Computadores , Europa (Continente) , Humanos , Método de Monte Carlo , Reforço Psicológico
9.
F1000Res ; 5: 1573, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27830057

RESUMO

There are almost two million people in the United Kingdom living with sight loss, including around 360,000 people who are registered as blind or partially sighted. Sight threatening diseases, such as diabetic retinopathy and age related macular degeneration have contributed to the 40% increase in outpatient attendances in the last decade but are amenable to early detection and monitoring. With early and appropriate intervention, blindness may be prevented in many cases. Ophthalmic imaging provides a way to diagnose and objectively assess the progression of a number of pathologies including neovascular ("wet") age-related macular degeneration (wet AMD) and diabetic retinopathy. Two methods of imaging are commonly used: digital photographs of the fundus (the 'back' of the eye) and Optical Coherence Tomography (OCT, a modality that uses light waves in a similar way to how ultrasound uses sound waves). Changes in population demographics and expectations and the changing pattern of chronic diseases creates a rising demand for such imaging. Meanwhile, interrogation of such images is time consuming, costly, and prone to human error. The application of novel analysis methods may provide a solution to these challenges. This research will focus on applying novel machine learning algorithms to automatic analysis of both digital fundus photographs and OCT in Moorfields Eye Hospital NHS Foundation Trust patients. Through analysis of the images used in ophthalmology, along with relevant clinical and demographic information, DeepMind Health will investigate the feasibility of automated grading of digital fundus photographs and OCT and provide novel quantitative measures for specific disease features and for monitoring the therapeutic success.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...