Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12304, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704156

RESUMO

The widespread wetland species Phragmites australis (Cav.) Trin. ex Steud. has the ability to transport gases through its stems via a pressurized flow. This results in a high oxygen (O2) transport to the rhizosphere, suppressing methane (CH4) production and stimulating CH4 oxidation. Simultaneously CH4 is transported in the opposite direction to the atmosphere, bypassing the oxic surface layer. This raises the question how this plant-mediated gas transport in Phragmites affects the net CH4 emission. A field experiment was set-up in a Phragmites-dominated fen in Germany, to determine the contribution of all three gas transport pathways (plant-mediated, diffusive and ebullition) during the growth stage of Phragmites from intact vegetation (control), from clipped stems (CR) to exclude the pressurized flow, and from clipped and sealed stems (CSR) to exclude any plant-transport. Clipping resulted in a 60% reduced diffusive + plant-mediated flux (control: 517, CR: 217, CSR: 279 mg CH4 m-2 day-1). Simultaneously, ebullition strongly increased by a factor of 7-13 (control: 10, CR: 71, CSR: 126 mg CH4 m-2 day-1). This increase of ebullition did, however, not compensate for the exclusion of pressurized flow. Total CH4 emission from the control was 2.3 and 1.3 times higher than from CR and CSR respectively, demonstrating the significant role of pressurized gas transport in Phragmites-stands.

2.
AMB Express ; 10(1): 61, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32236738

RESUMO

Peatlands have acted as C-sinks for millennia, storing large amounts of carbon, of which a significant amount is yearly released as methane (CH4). Sphagnum mosses are a key genus in many peat ecosystems and these mosses live in close association with methane-oxidizing and nitrogen-fixing microorganisms. To disentangle mechanisms which may control Sphagnum-associated methane-oxidation and nitrogen-fixation, we applied four treatments to Sphagnum mosses from a pristine peatland in Finland: nitrogen fertilization, phosphorus fertilization, CH4 addition and light. N and P fertilization resulted in nutrient accumulation in the moss tissue, but did not increase Sphagnum growth. While net CO2 fixation rates remained unaffected in the N and P treatment, net CH4 emissions decreased because of enhanced CH4 oxidation. CH4 addition did not affect Sphagnum performance in the present set-up. Light, however, clearly stimulated the activity of associated nitrogen-fixing and methane-oxidizing microorganisms, increasing N2 fixation rates threefold and CH4 oxidation rates fivefold. This underlines the strong connection between Sphagnum and associated N2 fixation and CH4 oxidation. It furthermore indicates that phototrophy is a strong control of microbial activity, which can be directly or indirectly.

3.
PLoS One ; 15(2): e0228383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32017783

RESUMO

Biological nitrogen (N) fixation is an important process supporting primary production in ecosystems, especially in those where N availability is limiting growth, such as peatlands and boreal forests. In many peatlands, peat mosses (genus Sphagnum) are the prime ecosystem engineers, and like feather mosses in boreal forests, they are associated with a diverse community of diazotrophs (N2-fixing microorganisms) that live in and on their tissue. The large variation in N2 fixation rates reported in literature remains, however, to be explained. To assess the potential roles of habitat (including nutrient concentration) and species traits (in particular litter decomposability and photosynthetic capacity) on the variability in N2 fixation rates, we compared rates associated with various Sphagnum moss species in a bog, the surrounding forest and a fen in Sweden. We found appreciable variation in N2 fixation rates among moss species and habitats, and showed that both species and habitat conditions strongly influenced N2 fixation. We here show that higher decomposition rates, as explained by lower levels of decomposition-inhibiting compounds, and higher phosphorous (P) levels, are related with higher diazotrophic activity. Combining our findings with those of other studies, we propose a conceptual model in which both species-specific traits of mosses (as related to the trade-off between rapid photosynthesis and resistance to decomposition) and P availability, explain N2 fixation rates. This is expected to result in a tight coupling between P and N cycling in peatlands.


Assuntos
Nitrogênio/análise , Fósforo/análise , Sphagnopsida/crescimento & desenvolvimento , Ecossistema , Florestas , Modelos Teóricos , Fixação de Nitrogênio , Fotossíntese , Sphagnopsida/classificação , Sphagnopsida/metabolismo , Suécia , Simbiose
4.
Sci Total Environ ; 610-611: 732-740, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28822940

RESUMO

Pristine bogs, peatlands in which vegetation is exclusively fed by rainwater (ombrotrophic), typically have a low atmospheric deposition of reactive nitrogen (N) (<0.5kgha-1y-1). An important additional N source is N2 fixation by symbiotic microorganisms (diazotrophs) in peat and mosses. Although the effects of increased total airborne N by anthropogenic emissions on bog vegetation are well documented, the important question remains how different N forms (ammonium, NH4+, versus nitrate, NO3-) affect N cycling, as their relative contribution to the total load strongly varies among regions globally. Here, we studied the effects of 11years of experimentally increased deposition (32 versus 8kgNha-1y-1) of either NH4+ or NO3- on N accumulation in three moss and one lichen species (Sphagnum capillifolium, S. papillosum, Pleurozium schreberi and Cladonia portentosa), N2 fixation rates of their symbionts, and potential N losses to peat soil and atmosphere, in a bog in Scotland. Increased input of both N forms led to 15-90% increase in N content for all moss species, without affecting their cover. The keystone species S. capillifolium showed 4 times higher N allocation into free amino acids, indicating N stress, but only in response to increased NH4+. In contrast, NO3- addition resulted in enhanced peat N mineralization linked to microbial NO3- reduction, increasing soil pH, N concentrations and N losses via denitrification. Unexpectedly, increased deposition from 8 to 32kgha-1y-1 in both N forms did not affect N2 fixation rates for any of the moss species and corresponded to an additional input of 5kgNha-1y-1 with a 100% S. capillifolium cover. Since both N forms clearly show differential effects on living Sphagnum and biogeochemical processes in the underlying peat, N form should be included in the assessment of the effects of N pollution on peatlands.

5.
J Appl Ecol ; 50(3): 740-747, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23894211

RESUMO

1. Vegetated biogeomorphic systems (e.g. mangroves, salt marshes, dunes, riparian vegetation) have been intensively studied for the impact of the biota on sediment transport processes and the resulting self-organization of such landscapes. However, there is a lack of understanding of physical disturbance mechanisms that limit primary colonization in active sedimentary environments. 2. This study elucidates the effect of sediment disturbance during the seedling stage of pioneer vegetation, using mangroves as a model system. We performed mesocosm experiments that mimicked sediment disturbance as (i) accretion/burial of plants and (ii) erosion/excavation of plants of different magnitudes and temporal distribution in combination with water movement and inundation stress. 3. Cumulative sediment disturbance reduced seedling survival, with the faster-growing Avicennia alba showing less mortality than the slower-growing Sonneratia alba. The presence of the additional stressors (inundation and water movement) predominantly reduced the survival of S. alba. 4. Non-lethal accretion treatments increased shoot biomass of the seedlings, whereas non-lethal erosion treatments increased root biomass allocation. This morphological plasticity in combination with the abiotic disturbance history determined how much maximum erosion the seedlings were able to withstand. 5.Synthesis and applications. Seedling survival in dynamic sedimentary environments is determined by the frequency and magnitude of sediment accretion or erosion events, with non-lethal events causing feedbacks to seedling stability. Managers attempting restoration of mangroves, salt marshes, dunes and riparian vegetation should recognize sediment dynamics as a main bottleneck to primary colonization. The temporal distribution of erosion and accretion events has to be evaluated against the ability of the seedlings to outgrow or adjust to disturbances. Our results suggest that selecting fast-growing pioneer species and measures to enhance seedling growth or temporary reduction in sediment dynamics at the restoration site can aid restoration success for vegetated biogeomorphic ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...