Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38876110

RESUMO

Functionality of the blood-brain barrier (BBB) relies on the interaction between endothelial cells (ECs), pericytes, and astrocytes to regulate molecule transport within the central nervous system. Most experimental models for the BBB rely on freshly isolated primary brain cells. Here, we explored human induced pluripotent stem cells (hiPSCs) as a cellular source for astrocytes in a 3D vessel-on-chip (VoC) model. Self-organized microvascular networks were formed by combining hiPSC-derived ECs, human brain vascular pericytes, and hiPSC-derived astrocytes within a fibrin hydrogel. The hiPSC-ECs and pericytes showed close interactions, but, somewhat unexpectedly, addition of astrocytes disrupted microvascular network formation. However, continuous fluid perfusion or activation of cyclic AMP (cAMP) signaling rescued the vascular organization and decreased vascular permeability. Nevertheless, astrocytes did not affect the expression of proteins related to junction formation, transport, or extracellular matrix, indicating that, despite other claims, hiPSC-derived ECs do not entirely acquire a BBB-like identity in the 3D VoC model.

2.
Cell Stem Cell ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38754430

RESUMO

Physiologically relevant human models that recapitulate the challenges of solid tumors and the tumor microenvironment (TME) are highly desired in the chimeric antigen receptor (CAR)-T cell field. We developed a breast cancer-on-chip model with an integrated endothelial barrier that enables the transmigration of perfused immune cells, their infiltration into the tumor, and concomitant monitoring of cytokine release during perfused culture over a period of up to 8 days. Here, we exemplified its use for investigating CAR-T cell efficacy and the ability to control the immune reaction with a pharmacological on/off switch. Additionally, we integrated primary breast cancer organoids to study patient-specific CAR-T cell efficacy. The modular architecture of our tumor-on-chip paves the way for studying the role of other cell types in the TME and thus provides the potential for broad application in bench-to-bedside translation as well as acceleration of the preclinical development of CAR-T cell products.

4.
Stem Cell Res ; 71: 103180, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37603921

RESUMO

Dutch-type cerebral amyloid angiopathy (D-CAA), also known as hereditary cerebral haemorrhage with amyloidosis-Dutch type (HCHWA-D), is an autosomal dominant disorder caused by a G to C transversion in codon 693 of the amyloid precursor protein (APP) that results in a Gln-to-Glu amino acid substitution. CRISPR-Cas9 editing was used for genetic correction of the mutation in a human induced pluripotent stem cell (hiPSC-) line established previously. The isogenic hiPSCs generated showed typical pluripotent stem cell morphology, expressed all markers of undifferentiated state, displayed a normal karyotype and had the capacity to differentiate into the three germ layers.


Assuntos
Angiopatia Amiloide Cerebral Familiar , Angiopatia Amiloide Cerebral , Células-Tronco Pluripotentes Induzidas , Humanos , Substituição de Aminoácidos , Linhagem Celular
5.
Stem Cell Reports ; 18(7): 1394-1404, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37390826

RESUMO

Functional vasculature is essential for delivering nutrients, oxygen, and cells to the heart and removing waste products. Here, we developed an in vitro vascularized human cardiac microtissue (MT) model based on human induced pluripotent stem cells (hiPSCs) in a microfluidic organ-on-chip by coculturing hiPSC-derived, pre-vascularized, cardiac MTs with vascular cells within a fibrin hydrogel. We showed that vascular networks spontaneously formed in and around these MTs and were lumenized and interconnected through anastomosis. Anastomosis was fluid flow dependent: continuous perfusion increased vessel density and thus enhanced the formation of the hybrid vessels. Vascularization further improved endothelial cell (EC)-cardiomyocyte communication via EC-derived paracrine factors, such as nitric oxide, and resulted in an enhanced inflammatory response. The platform sets the stage for studies on how organ-specific EC barriers respond to drugs or inflammatory stimuli.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Neovascularização Patológica , Células Endoteliais , Diferenciação Celular
6.
Stem Cells ; 41(2): 140-152, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512477

RESUMO

The ability to differentiate human-induced pluripotent stem cells (hiPSCs) efficiently into defined cardiac lineages, such as cardiomyocytes and cardiac endothelial cells, is crucial to study human heart development and model cardiovascular diseases in vitro. The mechanisms underlying the specification of these cell types during human development are not well understood which limits fine-tuning and broader application of cardiac model systems. Here, we used the expression of ETV2, a master regulator of hematoendothelial specification in mice, to identify functionally distinct subpopulations during the co-differentiation of endothelial cells and cardiomyocytes from hiPSCs. Targeted analysis of single-cell RNA-sequencing data revealed differential ETV2 dynamics in the 2 lineages. A newly created fluorescent reporter line allowed us to identify early lineage-predisposed states and show that a transient ETV2-high-state initiates the specification of endothelial cells. We further demonstrated, unexpectedly, that functional cardiomyocytes can originate from progenitors expressing ETV2 at a low level. Our study thus sheds light on the in vitro differentiation dynamics of 2 important cardiac lineages.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Animais , Camundongos , Humanos , Células Endoteliais/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima , Diferenciação Celular/genética , Endotélio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Lab Chip ; 23(1): 168-181, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36484766

RESUMO

Three-dimensional (3D) blood vessels-on-a-chip (VoC) models integrate the biological complexity of vessel walls with dynamic microenvironmental cues, such as wall shear stress (WSS) and circumferential strain (CS). However, these parameters are difficult to control and are often poorly reproducible due to the high intrinsic diameter variation of individual 3D-VoCs. As a result, the throughput of current 3D systems is one-channel-at-a-time. Here, we developed a fluidic circuit board (FCB) for simultaneous perfusion of up to twelve 3D-VoCs using a single set of control parameters. By designing the internal hydraulic resistances in the FCB appropriately, it was possible to provide a pre-set WSS to all connected 3D-VoCs, despite significant variation in lumen diameters. Using this FCB, we found that variation of CS or WSS induce morphological changes to human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) and conclude that control of these parameters using a FCB is necessary to study 3D-VOCs.


Assuntos
Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Humanos , Perfusão , Dispositivos Lab-On-A-Chip , Estresse Mecânico
8.
Curr Protoc ; 2(10): e564, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36250774

RESUMO

Blood vessels are composed of endothelial cells (ECs) that form the inner vessel wall and mural cells that cover the ECs to mediate their stabilization. Crosstalk between ECs and VSMCs while the ECs undergo microfluidic flow is vital for the function and integrity of blood vessels. Here, we describe a protocol to generate three-dimensional (3D) engineered vessels-on-chip (VoCs) composed of vascular cells derived from human induced pluripotent stem cells (hiPSCs). We first describe protocols for robust differentiation of vascular smooth muscle cells (hiPSC-VSMCs) from hiPSCs that are effective across multiple hiPSC lines. Second, we describe the fabrication of a simple microfluidic device consisting of a single collagen lumen that can act as a cell scaffold and support fluid flow using the viscous finger patterning (VFP) technique. After the channel is seeded sequentially with hiPSC-derived ECs (hiPSC-ECs) and hiPSC-VSMCs, a stable EC barrier covered by VSMCs lines the collagen lumen. We demonstrate that this 3D VoC model can recapitulate physiological cell-cell interaction and can be perfused under physiological shear stress using a microfluidic pump. The uniform geometry of the vessel lumens allows precise control of flow dynamics. We have thus developed a robust protocol to generate an entirely isogenic hiPSC-derived 3D VoC model, which could be valuable for studying vessel barrier function and physiology in healthy or disease states. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Differentiation of hiPSC-VSMCs Support Protocol 1: Characterization of hiPSC-NCCs and hiPSC-VSMCs Support Protocol 2: Preparation of cryopreserved hiPSC-VSMCs and hiPSC-ECs for VoC culture Basic Protocol 2: Generation of 3D VoC model composed of hiPSC-ECs and hiPSC-VSMCs Support Protocol 3: Structural characterization of 3D VoC model.


Assuntos
Células-Tronco Pluripotentes Induzidas , Compostos Orgânicos Voláteis , Colágeno/metabolismo , Células Endoteliais , Humanos , Dispositivos Lab-On-A-Chip , Miócitos de Músculo Liso , Compostos Orgânicos Voláteis/metabolismo
9.
Stem Cell Reports ; 17(7): 1536-1545, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35777360

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a genetic disease characterized by weak blood vessels. HHT1 is caused by mutations in the ENDOGLIN (ENG) gene. Here, we generated induced pluripotent stem cells (hiPSCs) from a patient with rare mosaic HHT1 with tissues containing both mutant (ENGc.1678C>T) and normal cells, enabling derivation of isogenic diseased and healthy hiPSCs, respectively. We showed reduced ENG expression in HHT1 endothelial cells (HHT1-hiPSC-ECs), reflecting haploinsufficiency. HHT1c.1678C>T-hiPSC-ECs and the healthy isogenic control behaved similarly in two-dimensional (2D) culture, forming functionally indistinguishable vascular networks. However, when grown in 3D organ-on-chip devices under microfluidic flow, lumenized vessels formed in which defective vascular organization was evident: interaction between inner ECs and surrounding pericytes was decreased, and there was evidence for vascular leakage. Organs on chip thus revealed features of HHT in hiPSC-derived blood vessels that were not evident in conventional 2D assays.


Assuntos
Células-Tronco Pluripotentes Induzidas , Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II/genética , Endoglina/genética , Endoglina/metabolismo , Células Endoteliais/metabolismo , Humanos , Mutação , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Telangiectasia Hemorrágica Hereditária/metabolismo
10.
Stem Cell Reports ; 16(9): 2159-2168, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34478648

RESUMO

Crosstalk between endothelial cells (ECs) and pericytes or vascular smooth muscle cells (VSMCs) is essential for the proper functioning of blood vessels. This balance is disrupted in several vascular diseases but there are few experimental models which recapitulate this vascular cell dialogue in humans. Here, we developed a robust multi-cell type 3D vessel-on-chip (VoC) model based entirely on human induced pluripotent stem cells (hiPSCs). Within a fibrin hydrogel microenvironment, the hiPSC-derived vascular cells self-organized to form stable microvascular networks reproducibly, in which the vessels were lumenized and functional, responding as expected to vasoactive stimulation. Vascular organization and intracellular Ca2+ release kinetics in VSMCs could be quantified using automated image analysis based on open-source software CellProfiler and ImageJ on widefield or confocal images, setting the stage for use of the platform to study vascular (patho)physiology and therapy.


Assuntos
Técnicas de Cultura de Células em Três Dimensões/métodos , Células Endoteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Dispositivos Lab-On-A-Chip , Miócitos de Músculo Liso/citologia , Engenharia Tecidual/métodos , Biomarcadores , Cálcio/metabolismo , Técnicas de Cultura de Células em Três Dimensões/instrumentação , Diferenciação Celular , Células Endoteliais/metabolismo , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Engenharia Tecidual/instrumentação
11.
Cell Rep Med ; 1(9): 100153, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33377124

RESUMO

Chromosomal translocations are prevalent among soft tissue tumors, including those of the vasculature such as pseudomyogenic hemangioendothelioma (PHE). PHE shows endothelial cell (EC) features and has a tumor-specific t(7;19)(q22;q13) SERPINE1-FOSB translocation, but is difficult to study as no primary tumor cell lines have yet been derived. Here, we engineer the PHE chromosomal translocation into human induced pluripotent stem cells (hiPSCs) using CRISPR/Cas9 and differentiate these into ECs (hiPSC-ECs) to address this. Comparison of parental with PHE hiPSC-ECs shows (1) elevated expression of FOSB, (2) higher proliferation and more tube formation but lower endothelial barrier function, (3) invasive growth and abnormal vessel formation in mice after transplantation, and (4) specific transcriptome alterations reflecting PHE and indicating PI3K-Akt and MAPK signaling pathways as possible therapeutic targets. The modified hiPSC-ECs thus recapitulate functional features of PHE and demonstrate how these translocation models can be used to understand tumorigenic mechanisms and identify therapeutic targets.


Assuntos
Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Diferenciação Celular/fisiologia , Humanos , Neoplasias de Tecido Vascular/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Neoplasias de Tecidos Moles/metabolismo , Translocação Genética/fisiologia , Neoplasias Vasculares/metabolismo
12.
Stem Cell Res ; 46: 101786, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485642

RESUMO

Fibroblasts from a patient carrying a heterozygous 18bp deletion in exon 8 of the ACVRL1 gene (c.1120del18) were reprogrammed using episomal vectors. The in-frame deletion in ACVRL1 causes the loss of 6 amino acids of the protein, which is associated with Hereditary Hemorrhagic Telangiectasia (HHT) type 2 (Letteboer et al., 2005). CRISPR-Cas9 editing was used to genetically correct the mutation in the induced pluripotent stem cells (iPSCs). The top5-predicted off-target sites were not altered. Patient and isogenic iPSCs showed high pluripotent marker expression, in vitro differentiation capacity into all three germ layers and displayed a normal karyotype. The obtained isogenic pairs will enable proper in vitro disease modelling of HHT (Roman and Hinck, 2017).


Assuntos
Células-Tronco Pluripotentes Induzidas , Telangiectasia Hemorrágica Hereditária , Receptores de Activinas Tipo II/genética , Células Clonais , Heterozigoto , Humanos , Mutação/genética , Telangiectasia Hemorrágica Hereditária/genética
13.
Curr Protoc Stem Cell Biol ; 52(1): e108, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32159928

RESUMO

Monocytes and macrophages are essential for immune defense and tissue hemostasis. They are also the underlying trigger of many diseases. The availability of robust and short protocols to induce monocytes and macrophages from human induced pluripotent stem cells (hiPSCs) will benefit many applications of immune cells in biomedical research. Here, we describe a protocol to derive and functionally characterize these cells. Large numbers of hiPSC-derived monocytes (hiPSC-mono) could be generated in just 15 days. These monocytes were fully functional after cryopreservation and could be polarized to M1 and M2 macrophage subtypes. hiPSC-derived macrophages (iPSDMs) showed high phagocytotic uptake of bacteria, apoptotic cells, and tumor cells. The protocol was effective across multiple hiPSC lines. In summary, we developed a robust protocol to generate hiPSC-mono and iPSDMs which showed phenotypic features of macrophages and functional maturity in different bioassays. © 2020 The Authors. Basic Protocol 1: Differentiation of hiPSCs toward monocytes Support Protocol 1: Isolation and cryopreservation of monocytes Support Protocol 2: Characterization of monocytes Basic Protocol 2: Differentiation of different subtypes of macrophages Support Protocol 3: Characterization of hiPSC-derived macrophages (iPSDMs) Support Protocol 4: Functional characterization of different subtypes of macrophages.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Monócitos/citologia , Diferenciação Celular , Separação Celular , Criopreservação , Humanos , Células Mieloides/citologia , Fagocitose
14.
APL Bioeng ; 3(2): 026105, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31263797

RESUMO

Blood vessel models are increasingly recognized to have value in understanding disease and drug discovery. However, continued improvements are required to more accurately reflect human vessel physiology. Realistic three-dimensional (3D) in vitro cultures of human vascular cells inside microfluidic chips, or vessels-on-chips (VoC), could contribute to this since they can recapitulate aspects of the in vivo microenvironment by including mechanical stimuli such as shear stress. Here, we used human induced pluripotent stem cells as a source of endothelial cells (hiPSC-ECs), in combination with a technique called viscous finger patterning (VFP) toward this goal. We optimized VFP to create hollow structures in collagen I extracellular-matrix inside microfluidic chips. The lumen formation success rate was over 90% and the resulting cellularized lumens had a consistent diameter over their full length, averaging 336 ± 15 µm. Importantly, hiPSC-ECs cultured in these 3D microphysiological systems formed stable and viable vascular structures within 48 h. Furthermore, this system could support coculture of hiPSC-ECs with primary human brain vascular pericytes, demonstrating their ability to accommodate biologically relevant combinations of multiple vascular cell types. Our protocol for VFP is more robust than previously published methods with respect to success rates and reproducibility of the diameter between- and within channels. This, in combination with the ease of preparation, makes hiPSC-EC based VoC a low-cost platform for future studies in personalized disease modeling.

15.
Stem Cell Reports ; 12(6): 1282-1297, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189095

RESUMO

A renewable source of human monocytes and macrophages would be a valuable alternative to primary cells from peripheral blood (PB) in biomedical research. We developed an efficient protocol to derive monocytes and macrophages from human induced pluripotent stem cells (hiPSCs) and performed a functional comparison with PB-derived cells. hiPSC-derived monocytes were functional after cryopreservation and exhibited gene expression profiles comparable with PB-derived monocytes. Notably, hiPSC-derived monocytes were more activated with greater adhesion to endothelial cells under physiological flow. hiPSC-derived monocytes were successfully polarized to M1 and M2 macrophage subtypes, which showed similar pan- and subtype-specific gene and surface protein expression and cytokine secretion to PB-derived macrophages. hiPSC-derived macrophages exhibited higher endocytosis and efferocytosis and similar bacterial and tumor cell phagocytosis to PB-derived macrophages. In summary, we developed a robust protocol to generate hiPSC monocytes and macrophages from independent hiPSC lines that showed aspects of functional maturity comparable with those from PB.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Monócitos/citologia
16.
Stem Cell Reports ; 12(4): 647-656, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30853373

RESUMO

Vascular smooth muscle cells (vSMCs) are highly heterogeneous across different vascular beds. This is partly dictated by their developmental origin but also their position in the vascular tree, reflected in their differential responses to vasoactive agonists depending on which arteriolar or venular segment they are located. Functional assays are necessary to capture this heterogeneity in vitro since there are no markers that distinguish subtypes. Here we describe methods for determining real-time intracellular Ca2+ release and contraction in vSMCs of neural crest origin differentiated from human induced pluripotent stem cells using multiple protocols, and compare these with primary human brain vascular pericytes and smooth muscle cells. Open-source software was adapted for automated high-density analysis of Ca2+-release kinetics and contraction by tracking individual cells. Simultaneous measurements on hundreds of cells revealed heterogeneity in responses to vasoconstrictors that would likely be overlooked using manual low-throughput assays or marker expression.


Assuntos
Cálcio/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Espaço Intracelular/metabolismo , Contração Muscular , Crista Neural/citologia , Crista Neural/metabolismo
17.
J Vis Exp ; (141)2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30531715

RESUMO

Endothelial cells (ECs) are essential for the regulation of inflammatory responses by either limiting or facilitating leukocyte recruitment into affected tissues via a well-characterized cascade of pro-adhesive receptors which are upregulated on the leukocyte cell surface upon the inflammatory trigger. Inflammatory responses differ between individuals in the population and the genetic background can contribute to these differences. Human induced pluripotent stem cells (hiPSCs) have been shown to be a reliable source of ECs (hiPSC-ECs), thus representing an unlimited source of cells that capture the genetic identity and any genetic variants or mutations of the donor. hiPSC-ECs can therefore be used for modeling inflammatory responses in donor-specific cells. Inflammatory responses can be modeled by determining leukocyte adhesion to the hiPSC-ECs under physiological flow. This step-by-step protocol provides a detailed description of the experimental setup and data analysis for the assessment of inflammatory responses in hiPSC-ECs and the analysis of leukocyte adhesion under physiological flow.


Assuntos
Adesão Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos/metabolismo , Microfluídica/métodos , Diferenciação Celular/fisiologia , Células Cultivadas , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Leucócitos/imunologia
18.
Stem Cell Reports ; 10(5): 1642-1656, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29657098

RESUMO

Several studies have reported endothelial cell (EC) derivation from human induced pluripotent stem cells (hiPSCs). However, few have explored their functional properties in depth with respect to line-to-line and batch-to-batch variability and how they relate to primary ECs. We therefore carried out accurate characterization of hiPSC-derived ECs (hiPSC-ECs) from multiple (non-integrating) hiPSC lines and compared them with primary ECs in various functional assays, which included barrier function using real-time impedance spectroscopy with an integrated assay of electric wound healing, endothelia-leukocyte interaction under physiological flow to mimic inflammation and angiogenic responses in in vitro and in vivo assays. Overall, we found many similarities but also some important differences between hiPSC-derived and primary ECs. Assessment of vasculogenic responses in vivo showed little difference between primary ECs and hiPSC-ECs with regard to functional blood vessel formation, which may be important in future regenerative medicine applications requiring vascularization.


Assuntos
Células Endoteliais da Veia Umbilical Humana/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Inflamação/patologia , Antígenos CD34/metabolismo , Bioensaio , Diferenciação Celular , Linhagem Celular , Movimento Celular , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Junções Intercelulares/metabolismo , Neovascularização Fisiológica , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
19.
Nat Protoc ; 9(6): 1514-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24874816

RESUMO

Human endothelial cells (ECs) and pericytes are of great interest for research on vascular development and disease, as well as for future therapy. This protocol describes the efficient generation of ECs and pericytes from human pluripotent stem cells (hPSCs) under defined conditions. Essential steps for hPSC culture, differentiation, isolation and functional characterization of ECs and pericytes are described. Substantial numbers of both cell types can be derived in only 2-3 weeks: this involves differentiation (10 d), isolation (1 d) and 4 or 10 d of expansion of ECs and pericytes, respectively. We also describe two assays for functional evaluation of hPSC-derived ECs: (i) primary vascular plexus formation upon coculture with hPSC-derived pericytes and (ii) incorporation in the vasculature of zebrafish xenografts in vivo. These assays can be used to test the quality and drug sensitivity of hPSC-derived ECs and model vascular diseases with patient-derived hPSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Células Endoteliais/citologia , Pericitos/citologia , Células-Tronco Pluripotentes/citologia , Animais , Proliferação de Células , Células Endoteliais/fisiologia , Xenoenxertos/irrigação sanguínea , Xenoenxertos/citologia , Humanos , Pericitos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Peixe-Zebra
20.
Arterioscler Thromb Vasc Biol ; 34(1): 177-86, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24158517

RESUMO

OBJECTIVE: Endothelial cells (ECs), pericytes, and vascular smooth muscle cells (vSMCs) are essential for vascular development, and their dysfunction causes multiple cardiovascular diseases. Primary vascular cells for research are, however, difficult to obtain. Human-induced pluripotent stem cells (hiPSCs) derived from somatic tissue are a renewable source of ECs and vSMCs; however, their use as disease models has been limited by low and inconsistent efficiencies of differentiation and the lack of phenotypic bioassays. APPROACH AND RESULTS: Here, we developed defined conditions for simultaneous derivation of ECs and pericytes with high efficiency from hiPSCs of different tissue origin. The protocol was equally efficient for all lines and human embryonic stem cells (hESCs). The ECs could undergo sequential passage and were phenotypically indistinguishable, exhibiting features of arterial-like embryonic ECs. Moreover, hiPSC-derived ECs formed an authentic vascular plexus when cocultured with hiPSC-derived pericytes. The coculture system recapitulated (1) major steps of vascular development including EC proliferation and primary plexus remodeling, and (2) EC-mediated maturation and acquisition of contractile vSMC phenotype by pericytes. In addition, hiPSC-derived ECs integrated into developing vasculature as xenografts in zebrafish. This contrasts with more widely used ECs from human umbilical vein, which form only unstable vasculature and were completely unable to integrate into zebrafish blood vessels. CONCLUSIONS: We demonstrate that vascular derivatives of hiPSC, such as ECs and pericytes, are fully functional and can be used to study defective endothelia-pericyte interactions in vitro for disease modeling and studies on tumor angiogenesis.


Assuntos
Diferenciação Celular , Células Endoteliais/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neovascularização Fisiológica , Pericitos/fisiologia , Animais , Biomarcadores/metabolismo , Comunicação Celular , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Endoteliais/transplante , Regulação da Expressão Gênica , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Pericitos/metabolismo , Pericitos/transplante , Fenótipo , Vasoconstrição , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...