Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16292, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770596

RESUMO

Large clinical trials often generate complex and large datasets which need to be presented frequently throughout the trial for interim analysis or to inform a data safety monitory board (DSMB). In addition, reliable and traceability are required to ensure reproducibility in pharmacometric data analysis. A reproducible pharmacometric analysis workflow was developed during a large clinical trial involving 1000 participants over one year testing Bacillus Calmette-Guérin (BCG) (re)vaccination in coronavirus disease 2019 (COVID-19) morbidity and mortality in frontline health care workers. The workflow was designed to review data iteratively during the trial, compile frequent reports to the DSMB, and prepare for rapid pharmacometric analysis. Clinical trial datasets (n = 41) were transferred iteratively throughout the trial for review. An RMarkdown based pharmacometric processing script was written to automatically generate reports for evaluation by the DSMB. Reports were compiled, reviewed, and sent to the DSMB on average three days after the data cut-off, reflecting the trial progress in real-time. The script was also utilized to prepare for the trial pharmacometric analyses. The same source data was used to create analysis datasets in NONMEM format and to support model script development. The primary endpoint analysis was completed three days after data lock and unblinding, and the secondary endpoint analyses two weeks later. The constructive collaboration between clinical, data management, and pharmacometric teams enabled this efficient, timely, and reproducible pharmacometrics workflow.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacina BCG/uso terapêutico , Reprodutibilidade dos Testes , Vacinação
2.
Front Pharmacol ; 14: 1150243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124198

RESUMO

Background: A critical step in tuberculosis (TB) drug development is the Phase 2a early bactericidal activity (EBA) study which informs if a new drug or treatment has short-term activity in humans. The aim of this work was to present a standardized pharmacometric model-based early bactericidal activity analysis workflow and determine sample sizes needed to detect early bactericidal activity or a difference between treatment arms. Methods: Seven different steps were identified and developed for a standardized pharmacometric model-based early bactericidal activity analysis approach. Non-linear mixed effects modeling was applied and different scenarios were explored for the sample size calculations. The sample sizes needed to detect early bactericidal activity given different TTP slopes and associated variability was assessed. In addition, the sample sizes needed to detect effect differences between two treatments given the impact of different TTP slopes, variability in TTP slope and effect differences were evaluated. Results: The presented early bactericidal activity analysis approach incorporates estimate of early bactericidal activity with uncertainty through the model-based estimate of TTP slope, variability in TTP slope, impact of covariates and pharmacokinetics on drug efficacy. Further it allows for treatment comparison or dose optimization in Phase 2a. To detect early bactericidal activity with 80% power and at a 5% significance level, 13 and 8 participants/arm were required for a treatment with a TTP-EBA0-14 as low as 11 h when accounting for variability in pharmacokinetics and when variability in TTP slope was 104% [coefficient of variation (CV)] and 22%, respectively. Higher sample sizes are required for smaller early bactericidal activity and when pharmacokinetics is not accounted for. Based on sample size determinations to detect a difference between two groups, TTP slope, variability in TTP slope and effect difference between two treatment arms needs to be considered. Conclusion: In conclusion, a robust standardized pharmacometric model-based EBA analysis approach was established in close collaboration between microbiologists, clinicians and pharmacometricians. The work illustrates the importance of accounting for covariates and drug exposure in EBA analysis in order to increase the power of detecting early bactericidal activity for a single treatment arm as well as differences in EBA between treatments arms in Phase 2a trials of TB drug development.

3.
EClinicalMedicine ; 48: 101414, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35582122

RESUMO

Background: BCG vaccination prevents severe childhood tuberculosis (TB) and was introduced in South Africa in the 1950s. It is hypothesised that BCG trains the innate immune system by inducing epigenetic and functional reprogramming, thus providing non-specific protection from respiratory tract infections. We evaluated BCG for reduction of morbidity and mortality due to COVID-19 in healthcare workers in South Africa. Methods: This randomised, double-blind, placebo-controlled trial recruited healthcare workers at three facilities in the Western Cape, South Africa, unless unwell, pregnant, breastfeeding, immunocompromised, hypersensitivity to BCG, or undergoing experimental COVID-19 treatment. Participants received BCG or saline intradermally (1:1) and were contacted once every 4 weeks for 1 year. COVID-19 testing was guided by symptoms. Hospitalisation, COVID-19, and respiratory tract infections were assessed with Cox proportional hazard modelling and time-to-event analyses, and event severity with post hoc Markovian analysis. This study is registered with ClinicalTrials.gov, NCT04379336. Findings: Between May 4 and Oct 23, 2020, we enrolled 1000 healthcare workers with a median age of 39 years (IQR 30-49), 70·4% were female, 16·5% nurses, 14·4% medical doctors, 48·5% had latent TB, and 15·3% had evidence of prior SARS-CoV-2 exposure. Hospitalisation due to COVID-19 occurred in 15 participants (1·5%); ten (66·7%) in the BCG group and five (33·3%) in the placebo group, hazard ratio (HR) 2·0 (95% CI 0·69-5·9, p = 0·20), indicating no statistically significant protection. Similarly, BCG had no statistically significant effect on COVID-19 (p = 0·63, HR = 1·08, 95% CI 0·82-1·42). Two participants (0·2%) died from COVID-19 and two (0·2%) from other reasons, all in the placebo group. Interpretation: BCG did not protect healthcare workers from SARS-CoV-2 infection or related severe COVID-19 disease and hospitalisation. Funding: Funding provided by EDCTP, grant number RIA2020EF-2968. Additional funding provided by private donors including: Mediclinic, Calavera Capital (Pty) Ltd, Thys Du Toit, Louis Stassen, The Ryan Foundation, and Dream World Investments 401 (Pty) Ltd. The computations were enabled by resources in project SNIC 2020-5-524 provided by the Swedish National Infrastructure for Computing (SNIC) at UPPMAX, partially funded by the Swedish Research Council through grant agreement No. 2018-05,973.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...