Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 19(1): 232, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34711223

RESUMO

BACKGROUND: Flowering plants (angiosperms) are dominant components of global terrestrial ecosystems, but phylogenetic relationships at the familial level and above remain only partially resolved, greatly impeding our full understanding of their evolution and early diversification. The plastome, typically mapped as a circular genome, has been the most important molecular data source for plant phylogeny reconstruction for decades. RESULTS: Here, we assembled by far the largest plastid dataset of angiosperms, composed of 80 genes from 4792 plastomes of 4660 species in 2024 genera representing all currently recognized families. Our phylogenetic tree (PPA II) is essentially congruent with those of previous plastid phylogenomic analyses but generally provides greater clade support. In the PPA II tree, 75% of nodes at or above the ordinal level and 78% at or above the familial level were resolved with high bootstrap support (BP ≥ 90). We obtained strong support for many interordinal and interfamilial relationships that were poorly resolved previously within the core eudicots, such as Dilleniales, Saxifragales, and Vitales being resolved as successive sisters to the remaining rosids, and Santalales, Berberidopsidales, and Caryophyllales as successive sisters to the asterids. However, the placement of magnoliids, although resolved as sister to all other Mesangiospermae, is not well supported and disagrees with topologies inferred from nuclear data. Relationships among the five major clades of Mesangiospermae remain intractable despite increased sampling, probably due to an ancient rapid radiation. CONCLUSIONS: We provide the most comprehensive dataset of plastomes to date and a well-resolved phylogenetic tree, which together provide a strong foundation for future evolutionary studies of flowering plants.


Assuntos
Magnoliopsida , Núcleo Celular , Ecossistema , Humanos , Magnoliopsida/genética , Filogenia , Plastídeos
2.
Sci Rep ; 10(1): 12430, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709951

RESUMO

Ideas on hominin evolution have long invoked the emergence from forests into open habitats as generating selection for traits such as bipedalism and dietary shifts. Though controversial, the savanna hypothesis continues to motivate research into the palaeo-environments of Africa. Reconstruction of these ancient environments has depended heavily on carbon isotopic analysis of fossil bones and palaeosols. The sparsity of the fossil record, however, imposes a limit to the strength of inference that can be drawn from such data. Time-calibrated phylogenies offer an additional tool for dating the spread of savanna habitat. Here, using the evolutionary ages of African savanna trees, we suggest an initial tropical or subtropical expansion of savanna between 10 and 15 Ma, which then extended to higher latitudes, reaching southern Africa ca. 3 Ma. Our phylogenetic estimates of the origin and latitudinal spread of savannas broadly correspond with isotopic age estimates and encompass the entire hominin fossil record. Our results are consistent with the savanna hypothesis of early hominin evolution and reignite the debate on the drivers of savanna expansion. Our analysis demonstrates the utility of phylogenetic proxies for dating major ecological transitions in geological time, especially in regions where fossils are rare or absent or occur in discontinuous sediments.


Assuntos
Evolução Biológica , Hominidae/fisiologia , Paleontologia/métodos , Dispersão Vegetal , Árvores/fisiologia , África Austral , Animais , Estudos de Viabilidade , Florestas , Pradaria
3.
Biodivers Data J ; 8: e39677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32015666

RESUMO

Phylogenies are a central and indispensable tool for evolutionary and ecological research. Even though most angiosperm families are well investigated from a phylogenetic point of view, there are far less possibilities to carry out large-scale meta-analyses at order level or higher. Here, we reconstructed a large-scale dated phylogeny including nearly 1/8th of all angiosperm species, based on two plastid barcoding genes, matK (incl. trnK) and rbcL. Novel sequences were generated for several species, while the rest of the data were mined from GenBank. The resulting tree was dated using 56 angiosperm fossils as calibration points. The resulting megaphylogeny is one of the largest dated phylogenetic tree of angiosperms yet, consisting of 36,101 sampled species, representing 8,399 genera, 426 families and all orders. This novel framework will be useful for investigating different broad scale research questions in ecological and evolutionary biology.

4.
Nat Plants ; 5(5): 461-470, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31061536

RESUMO

Angiosperms are by far the most species-rich clade of land plants, but their origin and early evolutionary history remain poorly understood. We reconstructed angiosperm phylogeny based on 80 genes from 2,881 plastid genomes representing 85% of extant families and all orders. With a well-resolved plastid tree and 62 fossil calibrations, we dated the origin of the crown angiosperms to the Upper Triassic, with major angiosperm radiations occurring in the Jurassic and Lower Cretaceous. This estimated crown age is substantially earlier than that of unequivocal angiosperm fossils, and the difference is here termed the 'Jurassic angiosperm gap'. Our time-calibrated plastid phylogenomic tree provides a highly relevant framework for future comparative studies of flowering plant evolution.


Assuntos
Evolução Biológica , Magnoliopsida , Fósseis , Genes de Plantas/genética , Genoma de Planta/genética , Magnoliopsida/genética , Filogenia
6.
Genome ; 62(3): 217-228, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30347172

RESUMO

Alien invasive species are problematic both economically and ecologically, particularly on islands. As such, understanding how they interact with their environment is necessary to inform invasive species management. Here, we ask the following questions: What are the main functional traits that correlate with invasion success of alien plants on Robben Island? How does phylogenetic structure shape biotic interactions on the island? Using multiple approaches to explore these questions, we found that alien invasive species flower later during the year and for longer period, although flowering phenology was sensitive to alternative starting date. Additionally, we observed that alien invasive species are mostly abiotically pollinated and are generally hermaphroditic whilst their native counterparts rely on biotic pollinators, flower earlier, and are generally dioecious, suggesting that alien invasive and native species use different ecological niches. Furthermore, we found a facilitative interaction between an alien invasive legume and other invasive plants as predicted by the invasional meltdown hypothesis, but this does not influence the phylogenetic structure of plant communities. Finally, phylogenetically diverse set of native species are less receptive to alien invasive species. Collectively, our findings reveal how biotic interactions and phylogenetic relatedness structure alien invasive - native co-existence.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , Espécies Introduzidas , Filogenia , Plantas/classificação , Plantas/genética , DNA de Plantas/análise , Ecossistema , Ilhas , África do Sul
7.
Genome ; 62(3): 229-242, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30495980

RESUMO

Bacteria are essential components of natural environments. They contribute to ecosystem functioning through roles as mutualists and pathogens for larger species, and as key components of food webs and nutrient cycles. Bacterial communities respond to environmental disturbances, and the tracking of these communities across space and time may serve as indicators of ecosystem health in areas of conservation concern. Recent advances in DNA sequencing of environmental samples allow for rapid and culture-free characterization of bacterial communities. Here we conduct the first metabarcoding survey of bacterial diversity in the waterholes of the Kruger National Park, South Africa. We show that eDNA can be amplified from waterholes and find strongly structured microbial communities, likely reflecting local abiotic conditions, animal ecology, and anthropogenic disturbance. Over timescales from days to weeks we find increased turnover in community composition, indicating bacteria may represent host-associated taxa of large vertebrates visiting the waterholes. Through taxonomic annotation we also identify pathogenic taxa, demonstrating the utility of eDNA metabarcoding for surveillance of infectious diseases. These samples serve as a baseline survey of bacterial diversity in the Kruger National Park, and in the future, spatially distinct microbial communities may be used as markers of ecosystem disturbance, or biotic homogenization across the park.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Bacteriano/genética , Monitoramento Ambiental/métodos , DNA Bacteriano/análise , Parques Recreativos
8.
Genome ; 60(11): 875-879, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29130757

RESUMO

Participants in the 7th International Barcode of Life Conference (Kruger National Park, South Africa, 20-24 November 2017) share the latest findings in DNA barcoding research and its increasingly diversified applications. Here, we review prevailing trends synthesized from among 429 invited and contributed abstracts, which are collated in this open-access special issue of Genome. Hosted for the first time on the African continent, the 7th Conference places special emphasis on the evolutionary origins, biogeography, and conservation of African flora and fauna. Within Africa and elsewhere, DNA barcoding and related techniques are being increasingly used for wildlife forensics and for the validation of commercial products, such as medicinal plants and seafood species. A striking trend of the conference is the dramatic rise of studies on environmental DNA (eDNA) and on diverse uses of high-throughput sequencing techniques. Emerging techniques in these areas are opening new avenues for environmental biomonitoring, managing species-at-risk and invasive species, and revealing species interaction networks in unprecedented detail. Contributors call for the development of validated community standards for high-throughput sequence data generation and analysis, to enable the full potential of these methods to be realized for understanding and managing biodiversity on a global scale.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Evolução Molecular , Animais , Biologia Computacional , Congressos como Assunto , Conservação dos Recursos Naturais , Sequenciamento de Nucleotídeos em Larga Escala , Lepidópteros/genética , Filogeografia , Plantas Medicinais/genética , África do Sul
9.
Genome ; 60(4): 337-347, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28177838

RESUMO

Although a standard DNA barcode has been identified for plants, it does not always provide species-level specimen identifications for investigating important ecological questions. In this study, we assessed the species-level discriminatory power of standard (rbcLa + matK) and complementary barcodes (ITS1 and trnH-psbA) within the subfamily Alooideae (Asphodelaceae), a large and recent plant radiation, whose species are important in horticulture yet are threatened. Alooideae has its centre of endemism in southern Africa, with some outlier species occurring elsewhere in Africa and Madagascar. We sampled 360 specimens representing 235 species within all 11 genera of the subfamily. With three distance-based methods, all markers performed poorly for our combined data set, with the highest proportion of correct species-level specimen identifications (30%) found for ITS1. However, when performance was assessed across genera, the discriminatory power varied from 0% for all single markers and combinations in Gasteria to 63% in Haworthiopsis, again for ITS1, suggesting that DNA barcoding success may be related to the evolutionary history of the lineage considered. Although ITS1 could be a good barcode for Haworthiopsis, the generally poor performance of all markers suggests that Alooideae remains a challenge. As species boundaries within Alooideae remain controversial, we call for continued search for suitable markers or the use of genomics approaches to further explore species discrimination in the group.


Assuntos
Asparagales/genética , Código de Barras de DNA Taxonômico/métodos , DNA Complementar/genética , Marcadores Genéticos/genética , Asparagales/classificação , DNA de Plantas/genética , Evolução Molecular , Variação Genética , Filogenia , Reprodutibilidade dos Testes , África do Sul , Especificidade da Espécie
10.
BMC Evol Biol ; 16(1): 238, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27821045

RESUMO

BACKGROUND: Dioscorea is a widely distributed and highly diversified genus in tropical regions where it is represented by ten main clades, one of which diversified exclusively in Africa. In southern Africa it is characterised by a distinct group of species with a pachycaul or "elephant's foot" structure that is partially to fully exposed above the substrate. In contrast to African representatives of the genus from other clades, occurring mainly in forest or woodland, the pachycaul taxa and their southern African relatives occur in diverse habitats ranging from woodland to open vegetation. Here we investigate patterns of diversification in the African clade, time of transition from forest to more open habitat, and morphological traits associated with each habitat and evaluate if such transitions have led to modification of reproductive organs and mode of dispersal. RESULTS: The Africa clade originated in the Oligocene and comprises four subclades. The Dioscorea buchananii subclade (southeastern tropical Africa and South Africa) is sister to the East African subclade, which is respectively sister to the recently evolved sister South African (e. g., Cape and Pachycaul) subclades. The Cape and Pachycaul subclades diversified in the east of the Cape Peninsula in the mid Miocene, in an area with complex geomorphology and climate, where the fynbos, thicket, succulent karoo and forest biomes meet. CONCLUSIONS: Diversification out of forest is associated with major shifts in morphology of the perennial tuber (specifically an increase in size and orientation which presumably led them to become pachycaul) and rotation of stem (from twining to non-twining). The iconic elephant's foot morphology, observed in grasslands and thicket biomes, where its corky bark may offer protection against fire and herbivory, evolved since mid Miocene. A shift in pollination trait is observed within the forest, but entry into open habitat does not show association with reproductive morphology, except in the seed wing, which has switched from winged all round the seed margin to just at the base or at the apex of it, or has been even replaced by an elaiosome.


Assuntos
Dioscorea/anatomia & histologia , Dioscoreaceae/anatomia & histologia , Ecossistema , Folhas de Planta/anatomia & histologia , África , Animais , Clima , Dioscorea/classificação , Dioscorea/fisiologia , Dioscoreaceae/classificação , Dioscoreaceae/fisiologia , Filogenia
12.
Proc Natl Acad Sci U S A ; 113(38): E5572-9, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601649

RESUMO

Savannas first began to spread across Africa during the Miocene. A major hypothesis for explaining this vegetation change is the increase in C4 grasses, promoting fire. We investigated whether mammals could also have contributed to savanna expansion by using spinescence as a marker of mammal herbivory. Looking at the present distribution of 1,852 tree species, we established that spinescence is mainly associated with two functional types of mammals: large browsers and medium-sized mixed feeders. Using a dated phylogeny for the same tree species, we found that spinescence evolved at least 55 times. The diversification of spiny plants occurred long after the evolution of Afrotherian proboscideans and hyracoids. However, it is remarkably congruent with diversification of bovids, the lineage including the antelope that predominantly browse these plants today. Our findings suggest that herbivore-adapted savannas evolved several million years before fire-maintained savannas and probably, in different environmental conditions. Spiny savannas with abundant mammal herbivores occur in drier climates and on nutrient-rich soils, whereas fire-maintained savannas occur in wetter climates on nutrient-poor soils.


Assuntos
Ecossistema , Pradaria , Plantas/genética , Poaceae/crescimento & desenvolvimento , África , Animais , Incêndios , Herbivoria/genética , Mamíferos , Filogenia , Poaceae/genética , Solo
14.
Artigo em Inglês | MEDLINE | ID: mdl-27481790

RESUMO

Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity-yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets.This article is part of the themed issue 'From DNA barcodes to biomes'.


Assuntos
Código de Barras de DNA Taxonômico , Genoma de Planta , Plantas/classificação , Biodiversidade , Plantas/genética
16.
AoB Plants ; 72015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26507570

RESUMO

Large-scale DNA barcoding provides a new technique for species identification and evaluation of relationships across various levels (populations and species) and may reveal fundamental processes in recently diverged species. Here, we analysed DNA sequence variation in the recently diverged legumes from the Psoraleeae (Fabaceae) occurring in the Cape Floristic Region (CFR) of southern Africa to test the utility of DNA barcodes in species identification and discrimination. We further explored the phylogenetic signal on fire response trait (reseeding and resprouting) at species and generic levels. We showed that Psoraleoid legumes of the CFR exhibit a barcoding gap yielding the combination of matK and rbcLa (matK + rbcLa) data set as a better barcode than single regions. We found a high score (100 %) of correct identification of individuals to their respective genera but a very low score (<50 %) in identifying them to species. We found a considerable match (54 %) between genetic species and morphologically delimited species. We also found that different lineages showed a weak but significant phylogenetic conservatism in their response to fire as reseeders or resprouters, with more clustering of resprouters than would be expected by chance. These novel microevolutionary patterns might be acting continuously over time to produce multi-scale regularities of biodiversity. This study provides the first insight into the DNA barcoding campaign of land plants in species identification and detection of the phylogenetic signal in recently diverged lineages of the CFR.

17.
Ecol Evol ; 4(11): 2115-23, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360253

RESUMO

Attempts to investigate the drivers of invasion success are generally limited to the biological and evolutionary traits distinguishing native from introduced species. Although alien species introduced to the same recipient environment differ in their invasion intensity - for example, some are "strong invaders"; others are "weak invaders" - the factors underlying the variation in invasion success within alien communities are little explored. In this study, we ask what drives the variation in invasion success of alien mammals in South Africa. First, we tested for taxonomic and phylogenetic signal in invasion intensity. Second, we reconstructed predictive models of the variation in invasion intensity among alien mammals using the generalized linear mixed-effects models. We found that the family Bovidae and the order Artiodactyla contained more "strong invaders" than expected by chance, and that such taxonomic signal did not translate into phylogenetic selectivity. In addition, our study indicates that latitude, gestation length, social group size, and human population density are only marginal determinant of the variation in invasion success. However, we found that evolutionary distinctiveness - a parameter characterising the uniqueness of each alien species - is the most important predictive variable. Our results indicate that the invasive behavior of alien mammals may have been "fingerprinted" in their evolutionary past, and that evolutionary history might capture beyond ecological, biological and life-history traits usually prioritized in predictive modeling of invasion success. These findings have applicability to the management of alien mammals in South Africa.

18.
New Phytol ; 204(1): 201-214, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039765

RESUMO

The origin of fire-adapted lineages is a long-standing question in ecology. Although phylogeny can provide a significant contribution to the ongoing debate, its use has been precluded by the lack of comprehensive DNA data. Here, we focus on the 'underground trees' (=geoxyles) of southern Africa, one of the most distinctive growth forms characteristic of fire-prone savannas. We placed geoxyles within the most comprehensive dated phylogeny for the regional flora comprising over 1400 woody species. Using this phylogeny, we tested whether African geoxyles evolved concomitantly with those of the South American cerrado and used their phylogenetic position to date the appearance of humid savannas. We found multiple independent origins of the geoxyle life-form mostly from the Pliocene, a period consistent with the origin of cerrado, with the majority of divergences occurring within the last 2 million yr. When contrasted with their tree relatives, geoxyles occur in regions characterized by higher rainfall and greater fire frequency. Our results indicate that the geoxylic growth form may have evolved in response to the interactive effects of frequent fires and high precipitation. As such, geoxyles may be regarded as markers of fire-maintained savannas occurring in climates suitable for forests.


Assuntos
Incêndios , Florestas , Pradaria , Adaptação Biológica , África , Biodiversidade , Evolução Biológica , Brasil , Ecossistema , Filogenia
19.
Ecol Evol ; 4(1): 50-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24455160

RESUMO

The recent evidence that extant cycads are not living fossils triggered a renewed search for a better understanding of their evolutionary history. In this study, we investigated the evolutionary diversification history of the genus Encephalartos, a monophyletic cycad endemic to Africa. We found an antisigmoidal pattern with a plateau and punctual explosive radiation. This pattern is typical of a constant radiation with mass extinction. The rate shift that we found may therefore be a result of a rapid recolonization of niches that have been emptied owing to mass extinction. Because the explosive radiation occurred during the transition Pliocene-Pleistocene, we argued that the processes might have been climatically mediated.

20.
Zookeys ; (365): 129-47, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24453555

RESUMO

Recent studies indicate that the discriminatory power of the core DNA barcodes (rbcLa + matK) for land plants may have been overestimated since their performance have been tested only on few closely related species. In this study we focused mainly on how the addition of complementary barcodes (nrITS and trnH-psbA) to the core barcodes will affect the performance of the core barcodes in discriminating closely related species from family to section levels. In general, we found that the core barcodes performed poorly compared to the various combinations tested. Using multiple criteria, we finally advocated for the use of the core + trnH-psbA as potential DNA barcode for the family Combretaceae at least in southern Africa. Our results also indicate that the success of DNA barcoding in discriminating closely related species may be related to evolutionary and possibly the biogeographic histories of the taxonomic group tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...