Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(1): 98-110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985898

RESUMO

The organization and coordination of fish schools provide a valuable model to investigate the genetic architecture of affiliative behaviours and dissect the mechanisms underlying social behaviours and personalities. Here we used replicate guppy selection lines that vary in schooling propensity and combine quantitative genetics with genomic and transcriptomic analyses to investigate the genetic basis of sociability phenotypes. We show that consistent with findings in collective motion patterns, experimental evolution of schooling propensity increased the sociability of female, but not male, guppies when swimming with unfamiliar conspecifics. This finding highlights a relevant link between coordinated motion and sociability for species forming fission-fusion societies in which both group size and the type of social interactions are dynamic across space and time. We further show that alignment and attraction, the two major traits forming the sociability personality axis in this species, showed heritability estimates at the upper end of the range previously described for social behaviours, with important variation across sexes. The results from both Pool-seq and RNA-seq data indicated that genes involved in neuron migration and synaptic function were instrumental in the evolution of sociability, highlighting a crucial role of glutamatergic synaptic function and calcium-dependent signalling processes in the evolution of schooling.


Assuntos
Peixes , Comportamento Social , Animais , Feminino , Peixes/fisiologia , Genoma , Genômica , Perfilação da Expressão Gênica
2.
J Evol Biol ; 36(10): 1357-1364, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37812155

RESUMO

Phylogenetic comparative methods (PCMs) can be used to study evolutionary relationships and trade-offs among species traits. Analysts using PCM may want to (1) include latent variables, (2) estimate complex trait interdependencies, (3) predict missing trait values, (4) condition predicted traits upon phylogenetic correlations and (5) estimate relationships as slope parameters that can be compared with alternative regression methods. The Comprehensive R Archive Network (CRAN) includes well-documented software for phylogenetic linear models (phylolm), phylogenetic path analysis (phylopath), phylogenetic trait imputation (Rphylopars) and structural equation models (sem), but none of these can simultaneously accomplish all five analytical goals. We therefore introduce a new package phylosem for phylogenetic structural equation models (PSEM) and summarize features and interface. We also describe new analytical options, where users can specify any combination of Ornstein-Uhlenbeck, Pagel's-δ and Pagel's-λ transformations for species covariance. For the first time, we show that PSEM exactly reproduces estimates (and standard errors) for simplified cases that are feasible in sem, phylopath, phylolm and Rphylopars and demonstrate the approach by replicating a well-known case study involving trade-offs in plant energy budgets.


Assuntos
Evolução Biológica , Software , Filogenia , Fenótipo , Modelos Lineares
3.
Nat Commun ; 14(1): 6027, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758730

RESUMO

One of the most spectacular displays of social behavior is the synchronized movements that many animal groups perform to travel, forage and escape from predators. However, elucidating the neural mechanisms underlying the evolution of collective behaviors, as well as their fitness effects, remains challenging. Here, we study collective motion patterns with and without predation threat and predator inspection behavior in guppies experimentally selected for divergence in polarization, an important ecological driver of coordinated movement in fish. We find that groups from artificially selected lines remain more polarized than control groups in the presence of a threat. Neuroanatomical measurements of polarization-selected individuals indicate changes in brain regions previously suggested to be important regulators of perception, fear and attention, and motor response. Additional visual acuity and temporal resolution tests performed in polarization-selected and control individuals indicate that observed differences in predator inspection and schooling behavior should not be attributable to changes in visual perception, but rather are more likely the result of the more efficient relay of sensory input in the brain of polarization-selected fish. Our findings highlight that brain morphology may play a fundamental role in the evolution of coordinated movement and anti-predator behavior.


Assuntos
Poecilia , Animais , Comportamento Predatório , Neuroanatomia , Escolaridade , Movimento (Física)
4.
Genome Res ; 33(8): 1317-1324, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442578

RESUMO

The rate of germline mutation is fundamental to evolutionary processes, as it generates the variation upon which selection acts. The guppy, Poecilia reticulata, is a model of rapid adaptation, however the relative contribution of standing genetic variation versus de novo mutation (DNM) to evolution in this species remains unclear. Here, we use pedigree-based approaches to quantify and characterize germline DNMs in three large guppy families. Our results suggest germline mutation rate in the guppy varies substantially across individuals and families. Most DNMs are shared across multiple siblings, suggesting they arose during early embryonic development. DNMs are randomly distributed throughout the genome, and male-biased mutation rate is low, as would be expected from the short guppy generation time. Overall, our study shows remarkable variation in germline mutation rate and provides insights into rapid evolution of guppies.


Assuntos
Poecilia , Humanos , Animais , Masculino , Poecilia/genética , Mutação em Linhagem Germinativa , Taxa de Mutação , Genoma , Células Germinativas
5.
Curr Biol ; 33(7): R277-R279, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37040712

RESUMO

Sexual selection has long been known to produce rapid evolution of spectacular traits. A new study reveals how sexual selection can also rapidly reshape the genome.


Assuntos
Evolução Biológica , Seleção Genética , Animais , Comportamento Sexual Animal , Fenótipo
6.
Learn Behav ; 51(2): 127-130, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36224508

RESUMO

The relative importance of adaptation and individual ontogenetic experience in dogs' high levels of behavioral compatibility with humans has been a topic of intense scientific attention over the past two decades. Salomons et al. Current Biology, 31, 3137-3144, (2021) recently presented a particularly rich data set of observations on both wolf and dog puppies that has the potential to contribute substantially to this debate. In their study subjecting wolf and dog puppies to batteries of tests, including the ability to follow human pointing gestures, Salomons et al. (2021) reported that dogs, but not wolves, have a specialized innate capacity for cooperation with humans. However, upon reanalyzing this data set, we reach a different conclusion-namely, that when controlling adequately for various environmental factors, wolves and dogs perform similarly in their cooperation with humans.


Assuntos
Lobos , Cães , Animais , Humanos , Comportamento Animal , Gestos , Atenção
7.
Sci Adv ; 7(46): eabj4314, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757792

RESUMO

The mosaic brain evolution hypothesis, stating that brain regions can evolve relatively independently during cognitive evolution, is an important idea to understand how brains evolve with potential implications even for human brain evolution. Here, we provide the first experimental evidence for this hypothesis through an artificial selection experiment in the guppy (Poecilia reticulata). After four generations of selection on relative telencephalon volume (relative to brain size), we found substantial changes in telencephalon size but no changes in other regions. Further comparisons revealed that up-selected lines had larger telencephalon, while down-selected lines had smaller telencephalon than wild Trinidadian populations. Our results support that independent evolutionary changes in specific brain regions through mosaic brain evolution can be important facilitators of cognitive evolution.

8.
Evol Lett ; 5(4): 359-369, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367661

RESUMO

The majority of the genome is shared between the sexes, and it is expected that the genetic architecture of most traits is shared as well. This common architecture has been viewed as a major source of constraint on the evolution of sexual dimorphism (SD). SD is nonetheless common in nature, leading to assumptions that it results from differential regulation of shared genetic architecture. Here, we study the effect of thousands of gene knockout mutations on 202 mouse phenotypes to explore how regulatory variation affects SD. We show that many traits are dimorphic to some extent, and that a surprising proportion of knockouts have sex-specific phenotypic effects. Many traits, regardless whether they are monomorphic or dimorphic, harbor cryptic differences in genetic architecture between the sexes, resulting in sexually discordant phenotypic effects from sexually concordant regulatory changes. This provides an alternative route to dimorphism through sex-specific genetic architecture, rather than differential regulation of shared architecture.

9.
Nat Ecol Evol ; 5(7): 939-948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958755

RESUMO

Loss of recombination between sex chromosomes often depletes Y chromosomes of functional content and genetic variation, which might limit their potential to generate adaptive diversity. Males of the freshwater fish Poecilia parae occur as one of five discrete morphs, all of which shoal together in natural populations where morph frequency has been stable for over 50 years. Each morph uses a different complex reproductive strategy and morphs differ dramatically in colour, body size and mating behaviour. Morph phenotype is passed perfectly from father to son, indicating there are five Y haplotypes segregating in the species, which encode the complex male morph characteristics. Here, we examine Y diversity in natural populations of P. parae. Using linked-read sequencing on multiple P. parae females and males of all five morphs, we find that the genetic architecture of the male morphs evolved on the Y chromosome after recombination suppression had occurred with the X. Comparing Y chromosomes between each of the morphs, we show that, although the Ys of the three minor morphs that differ in colour are highly similar, there are substantial amounts of unique genetic material and divergence between the Ys of the three major morphs that differ in reproductive strategy, body size and mating behaviour. Altogether, our results suggest that the Y chromosome is able to overcome the constraints of recombination loss to generate extreme diversity, resulting in five discrete Y chromosomes that control complex reproductive strategies.


Assuntos
Poecilia , Animais , Feminino , Água Doce , Masculino , Poecilia/genética , Polimorfismo Genético , Reprodução/genética , Cromossomo Y/genética
10.
Evol Lett ; 4(6): 545-555, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33312689

RESUMO

Sexual dimorphism is typically thought to result from sexual selection for elaborated male traits, as proposed by Darwin. However, natural selection could reduce expression of elaborated traits in females, as proposed by Wallace. Darwin and Wallace debated the origins of dichromatism in birds and butterflies, and although evidence in birds is roughly equal, if not in favor of Wallace's model, butterflies lack a similar scale of study. Here, we present a large-scale comparative phylogenetic analysis of the evolution of butterfly coloration, using all European non-hesperiid butterfly species (n = 369). We modeled evolutionary changes in coloration for each species and sex along their phylogeny, thereby estimating the rate and direction of evolution in three-dimensional color space using a novel implementation of phylogenetic ridge regression. We show that male coloration evolved faster than female coloration, especially in strongly dichromatic clades, with male contribution to changes in dichromatism roughly twice that of females. These patterns are consistent with a classic Darwinian model of dichromatism via sexual selection on male coloration, suggesting this model was the dominant driver of dichromatism in European butterflies.

11.
Proc Biol Sci ; 287(1937): 20201677, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33081622

RESUMO

Coloration plays a key role in the ecology of many species, influencing how an organism interacts with its environment, other species and conspecifics. Guppies are sexually dimorphic, with males displaying sexually selected coloration resulting from female preference. Previous work has suggested that much of guppy colour pattern variation is Y-linked. However, it remains unclear how many individual colour patterns are Y-linked in natural populations as much of the previous work has focused on phenotypes either not found in the wild, or aggregate measures such as total colour area. Moreover, ornaments have traditionally been identified and delineated by hand, and computational methods now make it possible to extract pixels and identify ornaments with automated methods, reducing the potential for human bias. Here we developed a pipeline for semi-automated ornament identification and high-resolution image analysis of male guppy colour patterns and applied it to a multigenerational pedigree. Our results show that loci controlling the presence or the absence of individual male ornaments in our population are not predominantly Y-linked. However, we find that ornaments of similar colour are not independent of each other, and modifier loci that affect whole animal coloration appear to be at least partially Y-linked. Considering these results, Y-linkage of individual ornaments may not be important in driving colour changes in natural populations of guppies, or in expansions of the non-recombining Y region, while Y-linked modifier loci that affect aggregate traits may well play an important role.


Assuntos
Pigmentação/fisiologia , Poecilia/fisiologia , Animais , Feminino , Masculino , Fenótipo , Seleção Genética , Caracteres Sexuais
12.
Evol Lett ; 4(3): 189-199, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32547780

RESUMO

Domesticated animals display suites of altered morphological, behavioral, and physiological traits compared to their wild ancestors, a phenomenon known as the domestication syndrome (DS). Because these alterations are observed to co-occur across a wide range of present day domesticates, the traits within the DS are assumed to covary within species and a single developmental mechanism has been hypothesized to cause the observed co-occurrence. However, due to the lack of formal testing it is currently not well-resolved if the traits within DS actually covary. Here, we test the hypothesis that the presence of the classic morphological domestication traits white pigmentation, floppy ears, and curly tails predict the strength of behavioral correlations in support of the DS in 78 dog breeds. Contrary to the expectations of covariation among DS traits, we found that morphological traits did not covary among themselves, nor did they predict the strength of behavioral correlations among dog breeds. Further, the number of morphological traits in a breed did not predict the strength of behavioral correlations. Our results thus contrast with the hypothesis that the DS arises due to a shared underlying mechanism, but more importantly, questions if the morphological traits embedded in the DS are actual domestication traits or postdomestication improvement traits. For dogs, it seems highly likely that strong selection for breed specific morphological traits only happened recently and in relation to breed formation. Present day dogs therefore have limited bearing of the initial selection pressures applied during domestication and we should reevaluate our expectations of the DS accordingly.

13.
Evolution ; 73(11): 2312-2323, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31579930

RESUMO

Species with fast life-histories typically prioritize current over future reproductive events, compared to species with slow life-histories. These species therefore require greater energetic input into reproduction, and also likely have less time to realize their reproductive potential. Hence, behaviors that increase access to both resources and mating opportunities, at a cost of increased mortality risk, could coevolve with the pace of life-history. However, whether this prediction holds across species, remains untested under standardized conditions. Here, we test how risky behaviors, which facilitate access to resources and mating opportunities (i.e., activity, boldness, and aggression), along with metabolic rate, coevolve with the pace of life-history across 20 species of killifish that present remarkable divergences in the pace of life-history. We found a positive association between the pace of life-history and aggression, but interestingly not with other behavioral traits or metabolic rate. Aggression is linked to interference competition, and in killifishes is often employed to secure mates, while activity and boldness are more relevant for exploiting energetic resources. Our results suggest that the trade-off between current and future reproduction plays a more prominent role in shaping mating behavior, while behaviors related to energy acquisition may be influenced by ecological factors.


Assuntos
Coevolução Biológica , Comportamento Consumatório , Fundulidae/genética , Características de História de Vida , Agressão , Animais , Metabolismo Basal , Fundulidae/metabolismo , Fundulidae/fisiologia
14.
Front Psychol ; 10: 2001, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555182

RESUMO

Selection of behavioral traits holds a prominent role in the domestication of animals, and domesticated species are generally assumed to express reduced fear and reactivity toward novel stimuli compared to their ancestral species. However, very few studies have explicitly tested this proposed link between domestication and reduced fear responses. Of the limited number of studies experimentally addressing the alterations of fear during domestication, the majority has been done on canids. These studies on foxes, wolves, and dogs suggest that decreased expression of fear in domesticated animals is linked to a domestication-driven delay in the first onset of fearful behavior during early ontogeny. Thus, wolves are expected to express exaggerated fearfulness earlier during ontogeny compared to dogs. However, while adult dogs are less fearful toward novelty than adult wolves and wolf-dog hybrids, consensus is lacking on when differences in fear expression arise in wolves and dogs. Here we present the first extended examination of fear development in hand-raised dogs and European gray wolves, using repeated novel object tests from 6 to 26 weeks of age. Contrary to expectations, we found no evidence in support of an increase in fearfulness in wolves with age or a delayed onset of fear response in dogs compared to wolves. Instead, we found that dogs strongly reduced their fear response in the period between 6 and 26 weeks of age, resulting in a significant species difference in fear expression toward novelty from the age of 18 weeks. Critically, as wolves did not differ in their fear response toward novelty over time, the detected species difference was caused solely by a progressive reduced fear response in dogs. Our results thereby suggest that species differences in fear of novelty between wolves and dogs are not caused by a domestication-driven shift in the first onset of fear response. Instead, we suggest that a loss of sensitivity toward novelty with age in dogs causes the difference in fear expression toward novelty in wolves and dogs.

16.
Nat Ecol Evol ; 2(9): 1492-1500, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30104752

RESUMO

The allometric relationship between brain and body size among vertebrates is often considered a manifestation of evolutionary constraints. However, birds and mammals have undergone remarkable encephalization, in which brain size has increased without corresponding changes in body size. Here, we explore the hypothesis that a reduction of phenotypic integration between brain and body size has facilitated encephalization in birds and mammals. Using a large dataset comprising 20,213 specimens across 4,587 species of jawed vertebrates, we show that the among-species (evolutionary) brain-body allometries are remarkably constant, both across vertebrate classes and across taxonomic levels. Birds and mammals, however, are exceptional in that their within-species (static) allometries are shallower and more variable than in other vertebrates. These patterns are consistent with the idea that birds and mammals have reduced allometric constraints that are otherwise ubiquitous across jawed vertebrates. Further exploration of ontogenetic allometries in selected taxa of birds, fishes and mammals reveals that birds and mammals have extended the period of fetal brain growth compared to fishes. Based on these findings, we propose that avian and mammalian encephalization has been contingent on increased variability in brain growth patterns.


Assuntos
Aves/anatomia & histologia , Tamanho Corporal , Encéfalo/anatomia & histologia , Mamíferos/anatomia & histologia , Animais , Evolução Biológica , Aves/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Feminino , Masculino , Mamíferos/crescimento & desenvolvimento , Filogenia , Poecilia/anatomia & histologia , Poecilia/crescimento & desenvolvimento
17.
PeerJ ; 6: e4718, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713568

RESUMO

Confirmatory path analysis allows researchers to evaluate and compare causal models using observational data. This tool has great value for comparative biologists since they are often unable to gather experimental data on macro-evolutionary hypotheses, but is cumbersome and error-prone to perform. I introduce phylopath, an R package that implements phylogenetic path analysis (PPA) as described by von Hardenberg & Gonzalez-Voyer (2013). In addition to the published method, I provide support for the inclusion of binary variables. I illustrate PPA and phylopath by recreating part of a study on the relationship between brain size and vulnerability to extinction. The package aims to make the analysis straight-forward, providing convenience functions, and several plotting methods, which I hope will encourage the spread of the method.

18.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29367391

RESUMO

It has become increasingly clear that a larger brain can confer cognitive benefits. Yet not all of the numerous aspects of cognition seem to be affected by brain size. Recent evidence suggests that some more basic forms of cognition, for instance colour vision, are not influenced by brain size. We therefore hypothesize that a larger brain is especially beneficial for distinct and gradually more complex aspects of cognition. To test this hypothesis, we assessed the performance of brain size selected female guppies (Poecilia reticulata) in two distinct aspects of cognition that differ in cognitive complexity. In a standard reversal-learning test we first investigated basic learning ability with a colour discrimination test, then reversed the reward contingency to specifically test for cognitive flexibility. We found that large-brained females outperformed small-brained females in the reversed-learning part of the test but not in the colour discrimination part of the test. Large-brained individuals are hence cognitively more flexible, which probably yields fitness benefits, as they may adapt more quickly to social and/or ecological cognitive challenges. Our results also suggest that a larger brain becomes especially advantageous with increasing cognitive complexity. These findings corroborate the significance of brain size for cognitive evolution.


Assuntos
Encéfalo/anatomia & histologia , Cognição , Aprendizagem , Poecilia/fisiologia , Recompensa , Animais , Feminino , Tamanho do Órgão
19.
Evolution ; 71(12): 2942-2951, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28986929

RESUMO

The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Poecilia/fisiologia , Seleção Genética , Animais , Tamanho Corporal , Feminino , Masculino , Tamanho do Órgão
20.
Sci Adv ; 3(3): e1601990, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28345039

RESUMO

Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Percepção de Cores/fisiologia , Preferência de Acasalamento Animal/fisiologia , Poecilia/fisiologia , Animais , Encéfalo/anatomia & histologia , Feminino , Masculino , Tamanho do Órgão , Poecilia/anatomia & histologia , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...