Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 176: 116866, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37558192

RESUMO

Osteoblast differentiation is epigenetically suppressed by the H3K27 methyltransferase EZH2, and induced by the morphogen BMP2 and transcription factor RUNX2. These factors also regulate distinct G protein coupled receptors (GPRCs; e.g., PTH1R, GPR30/GPER1). Because GPRCs transduce many physiological stimuli, we examined whether BMP2 or EZH2 inhibition (i.e., GSK126) regulates other GPRC genes in osteoblasts. RNA-seq screening of >400 mouse GPRC-related genes showed that many GPRCs are downregulated during osteogenic differentiation. The orphan receptor GPRC5C, along with a small subset of other GPRCs, is induced by BMP2 or GSK126 during Vitamin C dependent osteoblast differentiation, but not by all-trans retinoic acid. ChIP-seq analysis revealed that GSK126 reduces H3K27me3 levels at the GPRC5C gene locus in differentiating MC3T3-E1 osteoblasts, consistent with enhanced GPRC5C mRNA expression. Loss of function analyses revealed that shRNA-mediated depletion of GPRC5C decreases expression of bone markers (e.g., BGLAP and IBSP) and mineral deposition in response to BMP2 or GSK126. GPRC5C mRNA was found to be reduced in the osteopenic bones of KLF10 null mice which have compromised BMP2 signaling. GPRC5C mRNA is induced by the bone-anabolic activity of 17ß-estradiol in trabecular but not cortical bone following ovariectomy. Collectively, these findings suggest that GPRC5C protein is a key node in a pro-osteogenic axis that is normally suppressed by EZH2-mediated H3K27me3 marks and induced during osteoblast differentiation by GSK126, BMP2, and/or 17ß-estradiol. Because GPRC5C protein is an understudied orphan receptor required for osteoblast differentiation, identification of ligands that induce GPRC5C signaling may support therapeutic strategies to mitigate bone-related disorders.


Assuntos
Histonas , Osteogênese , Animais , Feminino , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Estradiol , Histonas/metabolismo , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , RNA Mensageiro/metabolismo
2.
Gene ; 851: 146928, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36191822

RESUMO

Bone formation is controlled by histone modifying enzymes that regulate post-translational modifications on nucleosomal histone proteins and control accessibility of transcription factors to gene promoters required for osteogenesis. Enhancer of Zeste homolog 2 (EZH2/Ezh2), a histone H3 lysine 27 (H3K27) methyl transferase, is a suppressor of osteoblast differentiation. Ezh2 is regulated by SET and MYND domain-containing protein 2 (SMYD2/Smyd2), a lysine methyltransferase that modifies both histone and non-histone proteins. Here, we examined whether Smyd2 modulates Ezh2 suppression of osteoblast differentiation. Musculoskeletal RNA-seq data show that SMYD2/Smyd2 is the most highly expressed SMYD/Smyd member in human bone tissues and mouse osteoblasts. Smyd2 loss of function analysis in mouse MC3T3 osteoblasts using siRNA depletion enhances proliferation and calcium deposition. Loss of Smyd2 protein does not affect alkaline phosphatase activity nor does it result in a unified expression response for standard osteoblast-related mRNA markers (e.g., Bglap, Ibsp, Spp1, Sp7), indicating that Smyd2 does not directly control osteoblast differentiation. Smyd2 protein depletion enhances levels of the osteo-suppressive Ezh2 protein and H3K27 trimethylation (H3K27me3), as expected from increased cell proliferation, while elevating the osteo-inductive Runx2 protein. Combined siRNA depletion of both Smyd2 and Ezh2 protein is more effective in promoting calcium deposition when compared to loss of either protein. Collectively, our results indicate that Smyd2 inhibits proliferation and indirectly the subsequent mineral deposition by osteoblasts. Mechanistically, Smyd2 represents a functional epigenetic regulator that operates in parallel to the suppressive effects of Ezh2 and H3K27 trimethylation on osteoblast differentiation.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Lisina , Camundongos , Animais , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , RNA Interferente Pequeno/metabolismo , Cálcio/metabolismo , Domínios MYND , Osteoblastos/metabolismo , Histonas/metabolismo , Proliferação de Células/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
3.
J Sci Med Sport ; 22(11): 1219-1225, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31395468

RESUMO

OBJECTIVES: To investigate the functional effect of genetic polymorphisms of the inflammatory pathway on structural extracellular matrix components (ECM) and the susceptibility to an anterior cruciate ligament (ACL) injury. DESIGN: Laboratory study, case-control study. METHODS: Eight healthy participants were genotyped for interleukin (IL)1B rs16944 C>T and IL6 rs1800795 G>C and classified into genetic risk profile groups. Differences in type I collagen (COL1A1), type V collagen (COL5A1), biglycan (BGN) and decorin (DCN) gene expression were measured in fibroblasts either unstimulated or following IL-1ß, IL-6 or tumor necrosis factor (TNF)-α treatment. Moreover, a genetic association study was conducted in: (i) a Swedish cohort comprised of 116 asymptomatic controls (CON) and 79 ACL ruptures and (ii) a South African cohort of 100 CONs and 98 ACLs. Participants were genotyped for COL5A1 rs12722 C>T, IL1B rs16944 C>T, IL6 rs1800795 G>C and IL6R rs2228145 G>C. RESULTS: IL1B high-risk fibroblasts had decreased BGN (p=0.020) and COL5A1 (p=0.012) levels after IL-1ß stimulation and expressed less COL5A1 (p=0.042) following TNF-α treatment. Similarly, unstimulated IL6 high-risk fibroblasts had lower COL5A1 (p=0.012) levels than IL6 low-risk fibroblasts. In the genetic association study, the COL5A1-IL1B-IL6 T-C-G (p=0.034, Haplo-score 2.1) and the COL5A1-IL1B-IL6R T-C-A (p=0.044, Haplo-score: 2.0) combinations were associated with an increased susceptibility to ACL injury in the Swedish cohort when only male participants were evaluated. CONCLUSIONS: This study shows that polymorphisms within genes of the inflammatory pathway modulate the expression of structural and fibril-associated ECM components in a genetic risk depended manner, contributing to an increased susceptibility to ACL injuries.


Assuntos
Lesões do Ligamento Cruzado Anterior/genética , Matriz Extracelular/genética , Interleucina-1beta/genética , Interleucina-6/genética , Adulto , Biglicano/genética , Estudos de Casos e Controles , Células Cultivadas , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo V/genética , Decorina/genética , Feminino , Fibroblastos , Estudos de Associação Genética , Genótipo , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Fatores de Risco , África do Sul , Suécia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...