Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Euro Surveill ; 29(23)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847120

RESUMO

BackgroundThe war in Ukraine led to migration of Ukrainian people. Early 2022, several European national surveillance systems detected multidrug-resistant (MDR) bacteria related to Ukrainian patients.AimTo investigate the genomic epidemiology of New Delhi metallo-ß-lactamase (NDM)-producing Providencia stuartii from Ukrainian patients among European countries.MethodsWhole-genome sequencing of 66 isolates sampled in 2022-2023 in 10 European countries enabled whole-genome multilocus sequence typing (wgMLST), identification of resistance genes, replicons, and plasmid reconstructions. Five bla NDM-1-carrying-P. stuartii isolates underwent antimicrobial susceptibility testing (AST). Transferability to Escherichia coli of a bla NDM-1-carrying plasmid from a patient strain was assessed. Epidemiological characteristics of patients with NDM-producing P. stuartii were gathered by questionnaire.ResultswgMLST of the 66 isolates revealed two genetic clusters unrelated to Ukraine and three linked to Ukrainian patients. Of these three, two comprised bla NDM-1-carrying-P. stuartii and the third bla NDM-5-carrying-P. stuartii. The bla NDM-1 clusters (PstCluster-001, n = 22 isolates; PstCluster-002, n = 8 isolates) comprised strains from seven and four countries, respectively. The bla NDM-5 cluster (PstCluster-003) included 13 isolates from six countries. PstCluster-001 and PstCluster-002 isolates carried an MDR plasmid harbouring bla NDM-1, bla OXA-10, bla CMY-16, rmtC and armA, which was transferrable in vitro and, for some Ukrainian patients, shared by other Enterobacterales. AST revealed PstCluster-001 isolates to be extensively drug-resistant (XDR), but susceptible to cefiderocol and aztreonam-avibactam. Patients with data on age (n = 41) were 19-74 years old; of 49 with information on sex, 38 were male.ConclusionXDR P. stuartii were introduced into European countries, requiring increased awareness and precautions when treating patients from conflict-affected areas.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos , Providencia , Sequenciamento Completo do Genoma , beta-Lactamases , Humanos , Ucrânia/epidemiologia , beta-Lactamases/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Providencia/genética , Providencia/isolamento & purificação , Providencia/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Europa (Continente)/epidemiologia , Plasmídeos/genética , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Idoso , Adulto Jovem
2.
Commun Med (Lond) ; 3(1): 123, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700016

RESUMO

BACKGROUND: Although the Netherlands is a country with a low endemic level, methicillin-resistant Staphylococcus aureus (MRSA) poses a significant health care problem. Therefore, high coverage national MRSA surveillance has been in place since 1989. To monitor possible changes in the type-distribution and emergence of resistance and virulence, MRSA isolates are molecularly characterized. METHODS: All 43,321 isolates from 36,520 persons, collected 2008-2019, were typed by multiple-locus variable number tandem repeats analysis (MLVA) with simultaneous PCR detection of the mecA, mecC and lukF-PV genes, indicative for PVL. Next-generation sequencing data of 4991 isolates from 4798 persons were used for whole genome multi-locus sequence typing (wgMLST) and identification of resistance and virulence genes. RESULTS: We show temporal change in the molecular characteristics of the MRSA population with the proportion of PVL-positive isolates increasing from 15% in 2008-2010 to 25% in 2017-2019. In livestock-associated MRSA obtained from humans, PVL-positivity increases to 6% in 2017-2019 with isolates predominantly from regions with few pig farms. wgMLST reveals the presence of 35 genogroups with distinct resistance, virulence gene profiles and specimen origin. Typing shows prolonged persistent MRSA carriage with a mean carriage period of 407 days. There is a clear spatial and a weak temporal relationship between isolates that clustered in wgMLST, indicative for regional spread of MRSA strains. CONCLUSIONS: Using molecular characterization, this exceptionally large study shows genomic changes in the MRSA population at the national level. It reveals waxing and waning of types and genogroups and an increasing proportion of PVL-positive MRSA.


A group of bacteria that cause difficult-to-treat infections in humans is methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to monitor changes in the spread of MRSA, their disease causing potential and resistance to antibiotics used to treat MRSA infections. MRSA from patients and their contacts in the Netherlands were collected over a period of 12 years and characterized. This revealed new types of MRSA emerged and others disappeared. An increasing number of MRSA produces a protein called PVL toxin, enabling MRSA to cause more severe infections. Also, some people appear to carry MRSA without any disease for more than a year. These findings suggest an increasing disease potential of MRSA and possible unnoticed sources of infection. Consequently, it is important to maintain monitoring of these infections to minimize MRSA spread.

3.
Front Microbiol ; 11: 564103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193150

RESUMO

Shigella spp. and entero-invasive Escherichia coli (EIEC) can cause mild diarrhea to dysentery. In Netherlands, although shigellosis is a notifiable disease, there is no laboratory surveillance for Shigella spp. and EIEC in place. Consequently, the population structure for circulating Shigella spp. and EIEC isolates is not known. This study describes the phenotypic and serological characteristics, the phenotypic and genetic antimicrobial resistance (AMR) profiles, the virulence gene profiles, the classic multi-locus sequence types (MLST) and core genome (cg)MLST types, and the epidemiology of 414 Shigella spp. and EIEC isolates collected during a cross-sectional study in Netherlands in 2016 and 2017. S. sonnei (56%), S. flexneri (25%), and EIEC (15%) were detected predominantly in Netherlands, of which the EIEC isolates were most diverse according to their phenotypical profile, O-types, MLST types, and cgMLST clades. Virulence gene profiling showed that none of the isolates harbored Shiga toxin genes. Most S. flexneri and EIEC isolates possessed nearly all virulence genes examined, while these genes were only detected in approximately half of the S. sonnei isolates, probably due to loss of the large invasion plasmid upon subculturing. Phenotypical resistance correlated well with the resistant genotype, except for the genes involved in resistance to aminoglycosides. A substantial part of the characterized isolates was resistant to antimicrobials advised for treatment, i.e., 73% was phenotypically resistant to co-trimoxazole and 19% to ciprofloxacin. AMR was particularly observed in isolates from male patients who had sex with men (MSM) or from patients that had traveled to Asia. Furthermore, isolates related to international clusters were also circulating in Netherlands. Travel-related isolates formed clusters with isolates from patients without travel history, indicating their emergence into the Dutch population. In conclusion, laboratory surveillance using whole genome sequencing as high-resolution typing technique and for genetic characterization of isolates complements the current epidemiological surveillance, as the latter is not sufficient to detect all (inter)national clusters, emphasizing the importance of multifactorial public health approaches.

4.
Sci Rep ; 10(1): 16778, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033293

RESUMO

Carbapenemase-producing Klebsiella pneumoniae emerged as a nosocomial pathogen causing morbidity and mortality in patients. For infection prevention it is important to track the spread of K. pneumoniae and its plasmids between patients. Therefore, the major aim was to recapitulate the contents and diversity of the plasmids of genetically related K. pneumoniae strains harboring the beta-lactamase gene blaKPC-2 or blaKPC-3 to determine their dissemination in the Netherlands and the former Dutch Caribbean islands from 2014 to 2019. Next-generation sequencing was combined with long-read third-generation sequencing to reconstruct 22 plasmids. wgMLST revealed five genetic clusters comprised of K. pneumoniae blaKPC-2 isolates and four clusters consisted of blaKPC-3 isolates. KpnCluster-019 blaKPC-2 isolates were found both in the Netherlands and the Caribbean islands, while blaKPC-3 cluster isolates only in the Netherlands. Each K. pneumoniae blaKPC-2 or blaKPC-3 cluster was characterized by a distinct resistome and plasmidome. However, the large and medium plasmids contained a variety of antibiotic resistance genes, conjugation machinery, cation transport systems, transposons, toxin/antitoxins, insertion sequences and prophage-related elements. The small plasmids carried genes implicated in virulence. Thus, implementing long-read plasmid sequencing analysis for K. pneumoniae surveillance provided important insights in the transmission of a KpnCluster-019 blaKPC-2 strain between the Netherlands and the Caribbean.


Assuntos
DNA Bacteriano/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Klebsiella pneumoniae/isolamento & purificação , Países Baixos
5.
PLoS One ; 15(8): e0237394, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822419

RESUMO

Bordetella pertussis vaccine escape mutants that lack expression of the pertussis antigen pertactin (Prn) have emerged in vaccinated populations in the last 10-20 years. Additionally, clinical isolates lacking another acellular pertussis (aP) vaccine component, filamentous hemagglutinin (FHA), have been found sporadically. Here, we show that both whole-cell pertussis (wP) and aP vaccines induced protection in the lungs of mice, but that the wP vaccine was more effective in nasal clearance. Importantly, bacterial populations isolated from the lungs shifted to an FHA-negative phenotype due to frameshift mutations in the fhaB gene. Loss of FHA expression was strongly selected for in Prn-deficient strains in the lungs following aP but not wP vaccination. The combined loss of Prn and FHA led to complete abrogation of bacterial surface binding by aP-induced serum antibodies. This study demonstrates vaccine- and anatomical site-dependent adaptation of B. pertussis and has major implications for the design of improved pertussis vaccines.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/fisiologia , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Hemaglutininas/metabolismo , Fatores de Virulência de Bordetella/metabolismo , Animais , Anticorpos Antibacterianos/imunologia , Bordetella pertussis/imunologia , Regulação da Expressão Gênica , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Vacinação , Coqueluche/metabolismo , Coqueluche/patologia , Coqueluche/prevenção & controle
6.
Euro Surveill ; 21(21)2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27254022

RESUMO

Since 2007, livestock-associated meticillin-resistant Staphylococcus aureus (LA-MRSA) has become the predominant MRSA clade isolated from humans in the Netherlands. To assess possible temporal changes, we molecularly characterised over 9,000 LA-MRSA isolates submitted from 2003 to 2014 to the Dutch MRSA surveillance. After an initial rapid increase with a peak in 2009 (n = 1,368), the total number of submitted LA-MRSA isolates has been slowly decreasing to 968 in 2014 and over 80% of LA-MRSA belonged to one of three predominant MLVA/spa-types. Next generation sequencing (n=118) showed that MT569/t034 isolates were genetically more diverse than MT398/t011 and MT572/t108. Concurrent with the decrease in LA-MRSA, fewer people reported having contact with livestock and this was most prominent for people carrying MT569/t034 LA-MRSA. The proportion of LA-MRSA isolated from infection-related materials increased from 6% in 2009, to 13% in 2014 and most of these isolates originated from patients older than 50 years of age. Remarkably, 83% of these patients reported not having contact with livestock. The results reveal an ongoing change in the genotypic and epidemiological characteristics of Dutch LA-MRSA isolated from humans with the emergence of a LA-MRSA subclade independent of livestock exposure, suggesting LA-MRSA starts to resemble non-LA-MRSA in terms of transmissibility and pathogenicity.


Assuntos
Doenças Transmissíveis Emergentes/microbiologia , Gado/microbiologia , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Evolução Biológica , Criança , Pré-Escolar , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/transmissão , Exposição Ambiental/estatística & dados numéricos , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Staphylococcus aureus Resistente à Meticilina/classificação , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Prevalência , Fatores de Risco , Especificidade da Espécie , Infecções Estafilocócicas/epidemiologia , Adulto Jovem
7.
Genome Announc ; 3(6)2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607899

RESUMO

Pathogen adaptation has contributed to the resurgence of pertussis. To facilitate our understanding of this adaptation we report here 11 completely closed and annotated Bordetella pertussis genomes representing the pandemic ptxP3 lineage. Our analyses included six strains which do not produce the vaccine components pertactin and/or filamentous hemagglutinin.

8.
J Clin Microbiol ; 53(3): 838-46, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25568442

RESUMO

Large outbreaks of pertussis occur despite vaccination. A first step in the analyses of outbreaks is strain typing. However, the typing of Bordetella pertussis, the causative agent of pertussis, is problematic because the available assays are insufficiently discriminatory, not unequivocal, time-consuming, and/or costly. Here, we describe a single nucleotide primer extension assay for the study of B. pertussis populations, SNPeX (single nucleotide primer extension), which addresses these problems. The assay is based on the incorporation of fluorescently labeled dideoxynucleotides (ddNTPs) at the 3' end of allele-specific poly(A)-tailed primers and subsequent analysis with a capillary DNA analyzer. Each single nucleotide polymorphism (SNP) primer has a specific length, and as a result, up to 20 SNPs can be determined in one SNPeX reaction. Importantly, PCR amplification of target DNA is not required. We selected 38 SNPeX targets from the whole-genome sequencing data of 74 B. pertussis strains collected from across the world. The SNPeX-based phylogenetic trees preserved the general tree topology of B. pertussis populations based on whole-genome sequencing, with a minor loss of details. We envisage a strategy whereby SNP types (SnpTs) are quickly identified with the SNPeX assay during an outbreak, followed by whole-genome sequencing (WGS) of a limited number of isolates representing predominant SnpTs and the incorporation of novel SNPs in the SNPeX assay. The flexibility of the SNPeX assay allows the method to evolve along with the pathogen, making it a promising method for studying outbreaks of B. pertussis and other pathogens.


Assuntos
Bordetella pertussis/classificação , Bordetella pertussis/genética , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Coqueluche/microbiologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Epidemiologia Molecular/métodos , Coqueluche/epidemiologia
9.
Genome Announc ; 2(6)2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25540342

RESUMO

Bordetella pertussis is the causative agent of pertussis, a disease which has resurged despite vaccination. We report the complete, annotated genomes of isolates B1917 and B1920, representing two lineages predominating globally in the last 50 years. The B1917 lineage has been associated with the resurgence of pertussis in the 1990s.

10.
mBio ; 5(2): e01074, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24757216

RESUMO

Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. IMPORTANCE Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape.


Assuntos
Bordetella pertussis/classificação , Bordetella pertussis/genética , Vacina contra Coqueluche/imunologia , Vacinação/métodos , Coqueluche/epidemiologia , Coqueluche/microbiologia , Adaptação Biológica , Bordetella pertussis/imunologia , Bordetella pertussis/isolamento & purificação , Análise por Conglomerados , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Evolução Molecular , Genoma Bacteriano , Saúde Global , Humanos , Lactente , Vacina contra Coqueluche/administração & dosagem , Filogenia
11.
PLoS One ; 7(9): e46407, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029513

RESUMO

Bordetella pertussis is the causative agent of pertussis, a highly contagious disease of the human respiratory tract. Despite high vaccination coverage, pertussis has resurged and has become one of the most prevalent vaccine-preventable diseases in developed countries. We have proposed that both waning immunity and pathogen adaptation have contributed to the persistence and resurgence of pertussis. Allelic variation has been found in virulence-associated genes coding for the pertussis toxin A subunit (ptxA), pertactin (prn), serotype 2 fimbriae (fim2), serotype 3 fimbriae (fim3) and the promoter for pertussis toxin (ptxP). In this study, we investigated how more than 60 years of vaccination has affected the Dutch B. pertussis population by combining data from phylogeny, genomics and temporal trends in strain frequencies. Our main focus was on the ptxA, prn, fim3 and ptxP genes. However, we also compared the genomes of 11 Dutch strains belonging to successful lineages. Our results showed that, between 1949 and 2010, the Dutch B. pertussis population has undergone as least four selective sweeps that were associated with small mutations in ptxA, prn, fim3 and ptxP. Phylogenetic analysis revealed a stepwise adaptation in which mutations accumulated clonally. Genomic analysis revealed a number of additional mutations which may have a contributed to the selective sweeps. Five large deletions were identified which were fixed in the pathogen population. However, only one was linked to a selective sweep. No evidence was found for a role of gene acquisition in pathogen adaptation. Our results suggest that the B. pertussis gene repertoire is already well adapted to its current niche and required only fine tuning to persist in the face of vaccination. Further, this work shows that small mutations, even single SNPs, can drive large changes in the populations of bacterial pathogens within a time span of six to 19 years.


Assuntos
Adaptação Biológica/genética , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Mutação , Vacinação , Coqueluche/prevenção & controle , Alelos , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Sequência de Bases , Bordetella pertussis/classificação , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/imunologia , Frequência do Gene , Variação Genética , Humanos , Dados de Sequência Molecular , Países Baixos/epidemiologia , Toxina Pertussis/genética , Toxina Pertussis/imunologia , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/imunologia , Filogenia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Sorotipagem , Virulência , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/imunologia , Coqueluche/epidemiologia , Coqueluche/imunologia , Coqueluche/microbiologia
12.
Vaccine ; 30(52): 7644-51, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22521844

RESUMO

The implementation of nationwide pneumococcal vaccination may lead to alterations in the pneumococcal population due to selective pressure induced by the vaccine. To monitor such changes, pneumococcal isolates causing invasive pneumococcal disease (IPD) before (2004-2005, n=1154) and after (2008-2009, n=1190) the implementation of the 7-valent pneumococcal vaccine (PCV7) in 2006 in the national immunization program (NIP) of The Netherlands were characterized by molecular typing using multiple-locus variable number tandem repeat analysis (MLVA) and capsular sequence typing (CST). The IPD incidence after the implementation of PCV7 in children <5 years of age declined, mainly due to an impressive reduction of cases caused by vaccine serotypes. In the age group of patients ≥5 years of age, the overall IPD incidence remained constant, but the IPD incidence due to vaccine serotypes declined in this age cohort as well, indicating herd immunity. IPD incidence of non-vaccine serotypes 1 and 22F isolates increased significantly and a shift in genetic background of the isolates belonging to these serotypes was observed. In general the composition of the pneumococcal population remained similar after the introduction of PCV7. Both before and after introduction of the vaccine several possible capsular switch events were noticed. We found 4 isolates from the pre-vaccination period in which the serotype 19F capsular locus had been horizontally transferred to a different genetic background. Remarkably, none of the 5 post-vaccination isolates in which we observed possible capsule switch belonged to the 19F serotype, possibly due to vaccine induced pressure. In the post-vaccine implementation period we found no evidence for capsular switch of a vaccine serotype to a non-vaccine serotype, indicating that capsular switch is not the main driving force for replacement. This study provides insights into the effects of nationwide vaccination on the pneumococcal population causing IPD.


Assuntos
Meningite Pneumocócica/epidemiologia , Meningite Pneumocócica/microbiologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/classificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cápsulas Bacterianas/genética , Criança , Pré-Escolar , Feminino , Vacina Pneumocócica Conjugada Heptavalente , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Países Baixos/epidemiologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Adulto Jovem
13.
PLoS One ; 6(9): e25018, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949837

RESUMO

The main virulence factor of Streptococcus pneumoniae is the capsule. The polysaccharides comprising this capsule are encoded by approximately 15 genes and differences in these genes result in different serotypes. The aim of this study was to investigate the sequence diversity of the capsular genes of serotypes 6A, 6B, 6C, 19A and 19F and to explore a possible effect of vaccination on variation and distribution of these serotypes in the Netherlands. The complete capsular gene locus was sequenced for 25 serogroup 6 and for 20 serogroup 19 isolates. If one or more genes varied in 10 or more base pairs from the reference sequence, it was designated as a capsular subtype. Allele-specific PCRs and specific gene sequencing of highly variable capsular genes were performed on 184 serogroup 6 and 195 serogroup 19 isolates to identify capsular subtypes. This revealed the presence of 6, 3 and a single capsular subtype within serotypes 6A, 6B and 6C, respectively. The serotype 19A and 19F isolates comprised 3 and 4 capsular subtypes, respectively. For serogroup 6, the genetic background, as determined by multi locus sequence typing (MLST) and multiple-locus variable number of tandem repeat analysis (MLVA), seemed to be closely related to the capsular subtypes, but this was less pronounced for serogroup 19 isolates. The data also suggest shifts in the occurrence of capsular subtypes within serotype 6A and 19A after introduction of the 7-valent pneumococcal vaccine. The shifts within these non-vaccine serotypes might indicate that these capsular subtypes are filling the niche of the vaccine serotypes. In conclusion, there is considerable DNA sequence variation of the capsular genes within pneumococcal serogroup 6 and 19. Such changes may result in altered polysaccharides or in strains that produce more capsular polysaccharides. Consequently, these altered capsules may be less sensitive for vaccine induced immunity.


Assuntos
Cápsulas Bacterianas/genética , Genes Bacterianos/genética , Polimorfismo Genético/genética , Sorotipagem , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genótipo , Humanos , Tipagem de Sequências Multilocus , Infecções Pneumocócicas/genética , Infecções Pneumocócicas/prevenção & controle , Análise de Sequência de DNA , Streptococcus pneumoniae/isolamento & purificação
14.
PLoS One ; 6(5): e20340, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21647370

RESUMO

To monitor changes in Bordetella pertussis populations, mainly two typing methods are used; Pulsed-Field Gel Electrophoresis (PFGE) and Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). In this study, a single nucleotide polymorphism (SNP) typing method, based on 87 SNPs, was developed and compared with PFGE and MLVA. The discriminatory indices of SNP typing, PFGE and MLVA were found to be 0.85, 0.95 and 0.83, respectively. Phylogenetic analysis, using SNP typing as Gold Standard, revealed false homoplasies in the PFGE and MLVA trees. Further, in contrast to the SNP-based tree, the PFGE- and MLVA-based trees did not reveal a positive correlation between root-to-tip distance and the isolation year of strains. Thus PFGE and MLVA do not allow an estimation of the relative age of the selected strains. In conclusion, SNP typing was found to be phylogenetically more informative than PFGE and more discriminative than MLVA. Further, in contrast to PFGE, it is readily standardized allowing interlaboratory comparisons. We applied SNP typing to study strains with a novel allele for the pertussis toxin promoter, ptxP3, which have a worldwide distribution and which have replaced the resident ptxP1 strains in the last 20 years. Previously, we showed that ptxP3 strains showed increased pertussis toxin expression and that their emergence was associated with increased notification in The Netherlands. SNP typing showed that the ptxP3 strains isolated in the Americas, Asia, Australia and Europe formed a monophyletic branch which recently diverged from ptxP1 strains. Two predominant ptxP3 SNP types were identified which spread worldwide. The widespread use of SNP typing will enhance our understanding of the evolution and global epidemiology of B. pertussis.


Assuntos
Bordetella pertussis/classificação , Bordetella pertussis/genética , Polimorfismo de Nucleotídeo Único/genética , Eletroforese em Gel de Campo Pulsado , Evolução Molecular , Filogenia , Sequências de Repetição em Tandem/genética
15.
PLoS One ; 6(5): e19668, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21637335

RESUMO

In the era of pneumococcal conjugate vaccines, surveillance of pneumococcal disease and carriage remains of utmost importance as important changes may occur in the population. To monitor these alterations reliable genotyping methods are required for large-scale applications. We introduced a high throughput multiple-locus variable number tandem repeat analysis (MLVA) and compared this method with pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The MLVA described here is based on 8 BOX loci that are amplified in two multiplex PCRs. The labeled PCR products are sized on an automated DNA sequencer to accurately determine the number of tandem repeats. The composite of the number of repeats of the BOX loci makes up a numerical profile that is used for identification and clustering. In this study, MLVA was performed on 263 carriage isolates that were previously characterized by MLST and PFGE. MLVA, MLST and PFGE (cut-off of 80%) yielded 164, 120, and 87 types, respectively. The three typing methods had Simpson's diversity indices of 98.5% or higher. Congruence between MLST and MLVA was high. The Wallace of MLVA to MLST was 0.874, meaning that if two strains had the same MLVA type they had an 88% chance of having the same MLST type. Furthermore, the Wallace of MLVA to clonal complex of MLST was even higher: 99.5%. For some isolates belonging to a single MLST clonal complex although displaying different serotypes, MLVA was more discriminatory, generating groups according to serotype or serogroup. Overall, MLVA is a promising genotyping method that is easy to perform and a relatively cheap alternative to PFGE and MLST. In the companion paper published simultaneously in this issue we applied the MLVA to assess the pneumococcal population structure of isolates causing invasive disease in The Netherlands before the introduction of the 7-valent conjugate vaccine.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Eletroforese em Gel de Campo Pulsado/métodos , Repetições Minissatélites/genética , Tipagem de Sequências Multilocus/métodos , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Criança , Loci Gênicos/genética , Genoma Bacteriano/genética , Humanos , Sorotipagem , Streptococcus pneumoniae/isolamento & purificação
16.
PLoS One ; 6(5): e20390, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21637810

RESUMO

The introduction of nationwide pneumococcal vaccination may lead to serotype replacement and the emergence of new variants that have expanded their genetic repertoire through recombination. To monitor alterations in the pneumococcal population structure, we have developed and utilized Capsular Sequence Typing (CST) in addition to Multiple-Locus Variable number tandem repeat Analysis (MLVA).To assess the serotype of each isolate CST was used. Based on the determination of the partial sequence of the capsular wzh gene, this method assigns a capsular type of an isolate within a single PCR reaction using multiple primersets. The genetic background of pneumococcal isolates was assessed by MLVA. MLVA and CST were used to create a snapshot of the Dutch pneumococcal population causing invasive disease before the introduction of the 7-valent pneumococcal conjugate vaccine in The Netherlands in 2006. A total of 1154 clinical isolates collected and serotyped by the Netherlands Reference Laboratory for Bacterial Meningitis were included in the snapshot. The CST was successful in discriminating most serotypes present in our collection. MLVA demonstrated that isolates belonging to some serotypes had a relatively high genetic diversity whilst other serotypes had a very homogeneous genetic background. MLVA and CST appear to be valuable tools to determine the population structure of pneumococcal isolates and are useful in monitoring the effects of pneumococcal vaccination.


Assuntos
Cápsulas Bacterianas/genética , Espécies Introduzidas , Repetições Minissatélites/genética , Tipagem de Sequências Multilocus/métodos , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/genética , Vacinação , Adolescente , Adulto , Idoso , Alelos , Técnicas de Tipagem Bacteriana , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Países Baixos , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Análise de Sequência de DNA , Sorotipagem , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/isolamento & purificação , Adulto Jovem
17.
J Clin Microbiol ; 49(1): 354-63, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21084524

RESUMO

The prevalence of Neisseria gonorrhoeae in the Netherlands has increased in recent years. A multiple-locus variable-number tandem repeat analysis (MLVA) was developed to assess the molecular epidemiology of N. gonorrhoeae and to elucidate transmission networks in high-risk groups in Amsterdam. The MLVA was evaluated using 5 variable-number tandem repeat (VNTR) loci with various degrees of polymorphism that were amplified in 2 multiplex PCRs and were then separated and sized on an automated sequencer. The assessed number of repeats was used to create MLVA profiles that consisted of strings of 5 integers. The stability of the VNTR loci was assessed using isolates obtained from multiple anatomical locations from the same patient (n = 118) and from patients and their sexual partners (n = 55). When isolates with a single locus variant were considered to belong to the same MLVA type, 87% of samples from multiple anatomical locations and 88% of samples from sexual partners shared an MLVA type. MLVA was ultimately performed on 880 isolates that were previously genotyped by restriction fragment length polymorphism (RFLP) analysis of the por-opa genes. Hierarchical cluster analysis of the MLVA profiles from 716 patient visits (one anatomical location per visit) classified 430 patient visits into 14 larger clusters (≥10 patient visits). In 7 clusters, 81% to 100% of isolates came from men who have sex with men (MSM); in 5 clusters, 79% to 100% of isolates came from heterosexuals; and 2 clusters contained isolates from fully mixed populations. Clusters also differed in characteristics such as ethnic background and coinfections. MLVA provided accurate identification of genetically related N. gonorrhoeae strains and revealed clusters of MSM and heterosexuals reflecting distinct transmission networks.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Gonorreia/epidemiologia , Repetições Minissatélites , Neisseria gonorrhoeae/classificação , Neisseria gonorrhoeae/genética , Adulto , Análise por Conglomerados , Feminino , Genótipo , Gonorreia/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular/métodos , Países Baixos/epidemiologia , Polimorfismo Genético
18.
BMC Genomics ; 11: 627, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21070624

RESUMO

BACKGROUND: Despite vaccination since the 1950s, pertussis has persisted and resurged. It remains a major cause of infant death worldwide and is the most prevalent vaccine-preventable disease in developed countries. The resurgence of pertussis has been associated with the expansion of Bordetella pertussis strains with a novel allele for the pertussis toxin (Ptx) promoter, ptxP3, which have replaced resident ptxP1 strains. Compared to ptxP1 strains, ptxP3 produce more Ptx resulting in increased virulence and immune suppression. To elucidate how B. pertussis has adapted to vaccination, we compared genome sequences of two ptxP3 strains with four strains isolated before and after the introduction vaccination. RESULTS: The distribution of SNPs in regions involved in transcription and translation suggested that changes in gene regulation play an important role in adaptation. No evidence was found for acquisition of novel genes. Modern strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles. The ptxP3 strains were found to have diverged recently from modern ptxP1 strains. Differences between ptxP3 and modern ptxP1 strains included SNPs in a number of pathogenicity-associated genes. Further, both gene inactivation and reactivation was observed in ptxP3 strains relative to modern ptxP1 strains. CONCLUSIONS: Our work suggests that B. pertussis adapted by successive accumulation of SNPs and by gene (in)activation. In particular changes in gene regulation may have played a role in adaptation.


Assuntos
Bordetella pertussis/genética , Bordetella pertussis/imunologia , Genômica/métodos , Vacina contra Coqueluche/genética , Vacina contra Coqueluche/imunologia , Vacinação , Alelos , Bordetella pertussis/isolamento & purificação , Bordetella pertussis/patogenicidade , Códon/genética , DNA Intergênico/genética , Deleção de Genes , Genes Bacterianos/genética , Mutagênese Insercional/genética , Fases de Leitura Aberta/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Sequências Reguladoras de Ácido Nucleico/genética , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo , Virulência/genética
19.
BMC Genomics ; 11: 64, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20102608

RESUMO

BACKGROUND: Bordetella pertussis is the causative agent of human whooping cough (pertussis) and is particularly severe in infants. Despite worldwide vaccinations, whooping cough remains a public health problem. A significant increase in the incidence of whooping cough has been observed in many countries since the 1990s. Several reasons for the re-emergence of this highly contagious disease have been suggested. A particularly intriguing possibility is based on evidence indicating that pathogen adaptation may play a role in this process. In an attempt to gain insight into the genomic make-up of B. pertussis over the last 60 years, we used an oligonucleotide DNA microarray to compare the genomic contents of a collection of 171 strains of B. pertussis isolates from different countries. RESULTS: The CGH microarray analysis estimated the core genome of B. pertussis, to consist of 3,281 CDSs that are conserved among all B. pertussis strains, and represent 84.8% of all CDSs found in the 171 B. pertussis strains. A total of 64 regions of difference consisting of one or more contiguous CDSs were identified among the variable genes. CGH data also revealed that the genome size of B. pertussis strains is decreasing progressively over the past 60 years. Phylogenetic analysis of microarray data generated a minimum spanning tree that depicted the phylogenetic structure of the strains. B. pertussis strains with the same gene content were found in several different countries. However, geographic specificity of the B. pertussis strains was not observed. The gene content was determined to highly correlate with the ptxP-type of the strains. CONCLUSIONS: An overview of genomic contents of a large collection of isolates from different countries allowed us to derive a core genome and a phylogenetic structure of B. pertussis. Our results show that B. pertussis is a dynamic organism that continues to evolve.


Assuntos
Bordetella pertussis/genética , Evolução Molecular , Genoma Bacteriano , Filogenia , Austrália/epidemiologia , Bordetella pertussis/classificação , Análise por Conglomerados , Hibridização Genômica Comparativa , DNA Bacteriano/genética , Mineração de Dados , Frequência do Gene , Genes Bacterianos , Japão/epidemiologia , Epidemiologia Molecular , Países Baixos/epidemiologia , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Suécia/epidemiologia , Coqueluche/epidemiologia
20.
Vaccine ; 27(13): 1898-903, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19368769

RESUMO

Despite more than 50 years of vaccination, whooping cough is still an endemic disease in the Netherlands with regular epidemic outbreaks. In the last 20 years, two periods of increased notifications were observed. The causes of the increased notifications in the first period, from 1983 to 1987, are contentious. At the time it was suggested to be a surveillance artifact, caused by changes in diagnostic procedures and increased awareness. An alternative explanation, a reduction in the vaccine dose, was downplayed at the time. The aim of this study was to reinvestigate the causes of the increased notifications by identifying changes in the Bordetella pertussis population. B. pertussis strains, isolated from 1965 to 1992, were characterized by means of fimbrial serotyping, multiple-locus sequence typing of virulence genes (MLST) and multiple-locus variable-number tandem repeat analysis (MLVA). Shifts in fimbrial serotypes and MLVA types were associated with changes in vaccine dose and increased number of notifications. One to three years after lowering of the vaccine dose, the predominant fimbrial serotype changed from Fim3 to Fim2, and the reverse trend was observed when the vaccine dose was increased. Significantly, changes in fimbrial serotypes were evident at least seven years before the increase in notifications. Our results provide evidence that the change in vaccine dose affected host immunity and, consequently, contributed to an increase in pertussis morbidity. Further, we show that MLVA and fimbrial serotyping of strains can be used as early warning for pertussis epidemics.


Assuntos
Bordetella pertussis/classificação , Notificação de Doenças , Surtos de Doenças , Programas de Imunização/tendências , Coqueluche/epidemiologia , Alelos , Bordetella pertussis/genética , Bordetella pertussis/imunologia , Bordetella pertussis/isolamento & purificação , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Variação Genética , Humanos , Epidemiologia Molecular , Países Baixos/epidemiologia , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/imunologia , Sorotipagem , Coqueluche/imunologia , Coqueluche/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA