RESUMO
Inward rectifier potassium (Kir) channels are expressed in almost all mammalian tissues and contribute to a wide range of physiological processes. Kir4.1 channel expression is found in the brain, inner ear, eye, and kidney. Loss-of-function mutations in the pore-forming Kir4.1 subunit cause an autosomal recessive disorder characterized by epilepsy, ataxia, sensorineural deafness and tubulopathy (SeSAME/EST syndrome). Despite its importance in physiological and pathological conditions, pharmacological research of Kir4.1 is limited. Here, we characterized the effect of pentamidine on Kir4.1 channels using electrophysiology, mutagenesis and computational methods. Pentamidine potently inhibited Kir4.1 channels when applied to the cytoplasmic side under inside-out patch clamp configuration (IC50 = 97nM). The block was voltage dependent. Molecular modeling predicted the binding of pentamidine to the transmembrane pore region of Kir4.1 at aminoacids T127, T128 and E158. Mutation of each of these residues reduced the potency of pentamidine to block Kir4.1 channels. A pentamidine analog (PA-6) inhibited Kir4.1 with similar potency (IC50 = 132nM). Overall, this study shows that pentamidine blocks Kir4.1 channels interacting with threonine and glutamate residues in the transmembrane pore region. These results can be useful to design novel compounds with major potency and specificity over Kir4.1 channels.
Assuntos
Pentamidina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Sítios de Ligação , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Pentamidina/metabolismo , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Conformação ProteicaRESUMO
Cardiac inward rectifier potassium currents determine the resting membrane potential and contribute repolarization capacity during phase 3 repolarization. Quinacrine is a cationic amphiphilic drug. In this work, the effects of quinacrine were studied on cardiac Kir channels expressed in HEK 293 cells and on the inward rectifier potassium currents, I(K1) and I(KATP), in cardiac myocytes. We found that quinacrine differentially inhibited Kir channels, Kir6.2 â¼ Kir2.3 > Kir2.1. In addition, we found in cardiac myocytes that quinacrine inhibited I(KATP) > I(K1). We presented evidence that quinacrine displays a double action towards strong inward rectifier Kir2.x channels, i.e., direct pore block and interference in phosphatidylinositol 4,5-bisphosphate, PIP(2)-Kir channel interaction. Pore block is evident in Kir2.1 and 2.3 channels as rapid block; channel block involves residues E224 and E299 facing the cytoplasmic pore of Kir2.1. The interference of the drug with the interaction of Kir2.x and Kir6.2/SUR2A channels and PIP(2) is suggested from four sources of evidence: (1) Slow onset of current block when quinacrine is applied from either the inside or the outside of the channel. (2) Mutation of Kir2.3(I213L) and mutation of Kir6.2(C166S) increase their affinity for PIP(2) and lowers its sensitivity for quinacrine. (3) Mutations of Kir2.1(L222I and K182Q) which decreased its affinity for PIP(2) increased its sensitivity for quinacrine. (4) Co-application of quinacrine with PIP(2) lowers quinacrine-mediated current inhibition. In conclusion, our data demonstrate how an old drug provides insight into a dual a blocking mechanism of Kir carried inward rectifier channels.
Assuntos
Miócitos Cardíacos/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Células HEK293 , Humanos , Quinacrina/farmacologiaRESUMO
Carvedilol, a ß- and α-adrenoceptor blocker, is used to treat congestive heart failure, mild to moderate hypertension, and myocardial infarction. It has been proposed to block K(ATP) channels by binding to the bundle crossing region at a domain including cysteine at position 166, and thereby plugging the pore region. However, carvedilol was reported not to affect Kir2.1 channels, which lack 166 Cys. Here, we demonstrate that carvedilol inhibits Kir2.3 carried current by an alternative mechanism. Carvedilol inhibited Kir2.3 channels with at least 100 fold higher potency (IC(50)=0.49 µM) compared to that for Kir2.1 (IC(50)>50 µM). Kir2.3 channel inhibition was concentration-dependent and voltage-independent. Increasing Kir2.3 channel affinity for PIP(2), by a I213L point mutation, decreased the inhibitory effect of carvedilol more than twentyfold (IC(50)=11.1 µM). In the presence of exogenous PIP(2), Kir2.3 channel inhibition by carvedilol was strongly reduced (80 vs. 2% current inhibition). These results suggest that carvedilol, as other cationic amphiphilic drugs, inhibits Kir2.3 channels by interfering with the PIP(2)-channel interaction.