Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; : e2350891, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509863

RESUMO

Metastatic colorectal cancer (CRC) is highly resistant to therapy and prone to recur. The tumor-induced local and systemic immunosuppression allows cancer cells to evade immunosurveillance, facilitating their proliferation and dissemination. Dendritic cells (DCs) are required for the detection, processing, and presentation of tumor antigens, and subsequently for the activation of antigen-specific T cells to orchestrate an effective antitumor response. Notably, successful tumors have evolved mechanisms to disrupt and impair DC functions, underlining the key role of tumor-induced DC dysfunction in promoting tumor growth, metastasis initiation, and treatment resistance. Conventional DC type 2 (cDC2) are highly prevalent in tumors and have been shown to present high phenotypic and functional plasticity in response to tumor-released environmental cues. This plasticity reverberates on both the development of antitumor responses and on the efficacy of immunotherapies in cancer patients. Uncovering the processes, mechanisms, and mediators by which CRC shapes and disrupts cDC2 functions is crucial to restoring their full antitumor potential. In this study, we use our recently developed 3D DC-tumor co-culture system to investigate how patient-derived primary and metastatic CRC organoids modulate cDC2 phenotype and function. We first demonstrate that our collagen-based system displays extensive interaction between cDC2 and tumor organoids. Interestingly, we show that tumor-corrupted cDC2 shift toward a CD14+ population with defective expression of maturation markers, an intermediate phenotype positioned between cDC2 and monocytes, and impaired T-cell activating abilities. This phenotype aligns with the newly defined DC3 (CD14+ CD1c+ CD163+) subset. Remarkably, a comparable population was found to be present in tumor lesions and enriched in the peripheral blood of metastatic CRC patients. Moreover, using EP2 and EP4 receptor antagonists and an anti-IL-6 neutralizing antibody, we determined that the observed phenotype shift is partially mediated by PGE2 and IL-6. Importantly, our system holds promise as a platform for testing therapies aimed at preventing or mitigating tumor-induced DC dysfunction. Overall, our study offers novel and relevant insights into cDC2 (dys)function in CRC that hold relevance for the design of therapeutic approaches.

2.
Eur J Immunol ; 54(1): e2350616, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840200

RESUMO

Dendritic cells (DCs) are essential in antitumor immunity. In humans, three main DC subsets are defined: two types of conventional DCs (cDC1s and cDC2s) and plasmacytoid DCs (pDCs). To study DC subsets in the tumor microenvironment (TME), it is important to correctly identify them in tumor tissues. Tumor-derived DCs are often analyzed in cell suspensions in which spatial information about DCs which can be important to determine their function within the TME is lost. Therefore, we developed the first standardized and optimized multiplex immunohistochemistry panel, simultaneously detecting cDC1s, cDC2s, and pDCs within their tissue context. We report on this panel's development, validation, and quantitative analysis. A multiplex immunohistochemistry panel consisting of CD1c, CD303, X-C motif chemokine receptor 1, CD14, CD19, a tumor marker, and DAPI was established. The ImmuNet machine learning pipeline was trained for the detection of DC subsets. The performance of ImmuNet was compared with conventional cell phenotyping software. Ultimately, frequencies of DC subsets within several tumors were defined. In conclusion, this panel provides a method to study cDC1s, cDC2s, and pDCs in the spatial context of the TME, which supports unraveling their specific roles in antitumor immunity.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imuno-Histoquímica , Biomarcadores Tumorais , Neoplasias/metabolismo , Células Dendríticas
3.
J Vis Exp ; (198)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37607099

RESUMO

The immune cell landscape of the tumor microenvironment potentially contains information for the discovery of prognostic and predictive biomarkers. Multiplex immunohistochemistry is a valuable tool to visualize and identify different types of immune cells in tumor tissues while retaining its spatial information. Here we provide detailed protocols to analyze lymphocyte, myeloid, and dendritic cell populations in tissue sections. Starting from cutting formalin-fixed paraffin-embedded sections, automatic multiplex staining procedures on an automated platform, scanning of the slides on a multispectral imaging microscope, to the analysis of images using an in-house-developed machine learning algorithm ImmuNet. These protocols can be applied to a variety of tumor specimens by simply switching tumor markers to analyze immune cells in different compartments of the sample (tumor versus invasive margin) and apply nearest-neighbor analysis. This analysis is not limited to tumor samples but can also be applied to other (non-)pathogenic tissues. Improvements to the equipment and workflow over the past few years have significantly shortened throughput times, which facilitates the future application of this procedure in the diagnostic setting.


Assuntos
Algoritmos , Microambiente Tumoral , Biomarcadores Tumorais , Análise por Conglomerados , Técnicas Histológicas
4.
Front Immunol ; 12: 704776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262573

RESUMO

Current treatment for patients with non-small-cell lung cancer (NSCLC) is suboptimal since therapy is only effective in a minority of patients and does not always induce a long-lasting response. This highlights the importance of exploring new treatment options. The clinical success of immunotherapy relies on the ability of the immune system to mount an adequate anti-tumor response. The activation of cytotoxic T cells, the effector immune cells responsible for tumor cell killing, is of paramount importance for the immunotherapy success. These cytotoxic T cells are primarily instructed by dendritic cells (DCs). DCs are the most potent antigen-presenting cells (APCs) and are capable of orchestrating a strong anti-cancer immune response. DC function is often suppressed in NSCLC. Therefore, resurrection of DC function is an interesting approach to enhance anti-cancer immune response. Recent data from DC-based treatment studies has given rise to the impression that DC-based treatment cannot induce clinical benefit in NSCLC by itself. However, these are all early-phase studies that were mainly designed to study safety and were not powered to study clinical benefit. The fact that these studies do show that DC-based therapies were well-tolerated and could induce the desired immune responses, indicates that DC-based therapy is still a promising option. Especially combination with other treatment modalities might enhance immunological response and clinical outcome. In this review, we will identify the possibilities from current DC-based treatment trials that could open up new venues to improve future treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Células Dendríticas , Imunoterapia , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Células Dendríticas/imunologia , Células Dendríticas/transplante , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia
5.
Cells ; 9(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888045

RESUMO

Squamous cell carcinoma (SCC) and adenocarcinoma (AC) represent the major cervical cancer histotypes. Both histotypes are caused by infection with high-risk HPV (hrHPV) and are associated with deregulated microRNA expression. Histotype-dependent expression has been observed for miR-9-5p, showing increased expression in SCC and low expression in AC. Here, we studied the regulation and functionality of miR-9-5p in cervical SCCs and ACs using cervical tissue samples and hrHPV-containing cell lines. Expression and methylation analysis of cervical tissues revealed that low levels of miR-9-5p in ACs are linked to methylation of its precursor genes, particularly miR-9-1. Stratification of tissue samples and hrHPV-containing cell lines suggested that miR-9-5p depends on both histotype and hrHPV type, with higher expression in SCCs and HPV16-positive cells. MiR-9-5p promoted cell viability and anchorage independence in cervical cancer cell lines SiHa (SCC, HPV16) and CaSki (metastasized SCC, HPV16), while it played a tumor suppressive role in HeLa (AC, HPV18). TWIST1, a transcription factor involved in epithelial-to-mesenchymal transition (EMT), was established as a novel miR-9-5p target. Our results show that miR-9-5p plays a dual role in cervical cancer in a histotype- and hrHPV type-dependent manner. MiR-9-5p mediated silencing of TWIST1 suggests two distinct mechanisms towards EMT in cervical cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Nucleares/genética , Interferência de RNA , Proteína 1 Relacionada a Twist/genética , Neoplasias do Colo do Útero/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...