Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
1.
Handb Clin Neurol ; 204: 37-50, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39322391

RESUMO

Magnetic resonance imaging (MRI) pattern recognition is a powerful tool for quick diagnosis of genetic and acquired white matter disorders. In many cases, distribution and character of white matter abnormalities directly point to a specific diagnosis and guide confirmatory testing. Knowledge of normal brain development is essential to interpret white matter changes in young children. MRI is also used for disease staging and treatment decisions in leukodystrophies and acquired disorders as multiple sclerosis, and as a biomarker to follow treatment effects.


Assuntos
Leucoencefalopatias , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Leucoencefalopatias/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
2.
Handb Clin Neurol ; 204: 77-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39322396

RESUMO

"Vanishing white matter" (VWM) is a leukodystrophy caused by autosomal recessive pathogenic variants in the genes encoding the subunits of eukaryotic initiation factor 2B (eIF2B). Disease onset and disease course are extremely variable. Onset varies from the antenatal period until senescence. The age of onset is predictive of disease severity. VWM is characterized by chronic neurologic deterioration and, additionally, episodes of rapid and major neurologic decline, provoked by stresses such as febrile infections and minor head trauma. The disease is dominated by degeneration of the white matter of the central nervous system due to dysfunction of oligodendrocytes and in particular astrocytes. Organs other than the brain are rarely affected, with the exception of the ovaries. The reason for the selective vulnerability of the white matter of the central nervous system and, less consistently, the ovaries is poorly understood. eIF2B is a central regulatory factor in the integrated stress response (ISR). Genetic variants decrease eIF2B activity and thereby cause constitutive activation of the ISR downstream of eIF2B. Strikingly, the ISR is specifically activated in astrocytes. Modulation of eIF2B activity and ISR activation in VWM mouse models impacts disease severity, revealing eIF2B-regulated pathways as potential druggable targets.


Assuntos
Fator de Iniciação 2B em Eucariotos , Leucoencefalopatias , Humanos , Animais , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Fator de Iniciação 2B em Eucariotos/genética , Substância Branca/patologia
3.
Eur Radiol ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320477

RESUMO

OBJECTIVES: The leukodystrophy "vanishing white matter" (VWM) and "metachromatic leukodystrophy" (MLD) affect the brain's white matter, but have very different underlying pathology. We aim to determine whether quantitative MRI reflects known neuropathological differences and correlates with clinical scores in these leukodystrophies. METHODS: VWM and MLD patients and controls were prospectively included between 2020 and 2023. Clinical scores were recorded. MRI at 3 T included multi-compartment relaxometry diffusion-informed myelin water imaging (MCR-DIMWI) and multi-echo T2-relaxation imaging with compressed sensing (METRICS) to determine myelin water fractions (MWF). Multi-shell diffusion-weighted data were used for diffusion tensor imaging measures and neurite orientation dispersion and density imaging (NODDI) analysis, which estimates neurite density index, orientation dispersion index, and free water fraction. As quantitative MRI measures are age-dependent, ratios between actual and age-expected MRI measures were calculated. We performed the multilevel analysis with subsequent post-hoc and correlation tests to assess differences between groups and clinico-radiological correlations. RESULTS: Sixteen control (age range: 2.3-61.3 years, 8 male), 37 VWM (2.4-56.5 years, 20 male), and 14 MLD (2.2-41.7 years, 6 male) subjects were included. Neurite density index and MWF were lower in patients than in controls (p < 0.001). Free water fraction was highest in VWM (p = 0.01), but similar to controls in MLD (p = 0.99). Changes in diffusion tensor imaging measures relative to controls were generally more pronounced in VWM than in MLD. In both patient groups, MCR-DIMWI MWF correlated strongest with clinical measures. CONCLUSION: Quantitative MRI correlates to clinical measures and yields differential profiles in VWM and MLD, in line with differences in neuropathology. KEY POINTS: Question Can quantitative MRI reflect known neuropathological differences and correlate with clinical scores for these leukodystrophies? Finding Quantitative MRI measures, e.g., MWF, neurite density index, and free water fraction differ between leukodystrophies and controls, in correspondence to known histological differences. Clinical relevance MRI techniques producing quantitative, biologically-specific, measures regarding the health of myelin and axons deliver more comprehensive information regarding pathological changes in leukodystrophies than current approaches, and are thus viable tools for monitoring patients and providing clinical trial outcome measures.

4.
Handb Clin Neurol ; 204: 253-261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39322382

RESUMO

Amino-acyl tRNA synthetases (ARSs) are enzymes that catalyze the amino-acylation reaction of a specific amino acid and its cognate tRNA and are divided into type 1 (cytosolic) and type 2 (mitochondrial). In this chapter leukodystrophies caused by tRNA synthetase deficiencies are reviewed.


Assuntos
Aminoacil-tRNA Sintetases , Humanos , Aminoacil-tRNA Sintetases/genética , Animais
5.
Clin Neurol Neurosurg ; 245: 108517, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173493

RESUMO

We present the case of a patient with leukoencephalopathy with calcifications and cysts (LCC), who experienced progressive severe hemiparesis despite multiple neurosurgical interventions of a large contralateral cyst. Bevacizumab was proposed as an ultimate treatment option based on prior case reports. While awaiting reimbursement approval for bevacizumab, major improvement occurred in both clinical and radiological disease manifestations. The disease course of LCC is variable and unpredictable; neurosurgical treatment should be reserved for severe and progressive neurological deficits. Bevacizumab has been reported as a promising alternative treatment option. Importantly, in our case the observed clinical improvement would have been attributed to the effects of bevacizumab, if started when requested. Our case underscores the need for a natural history study for LCC and the necessity of validating treatment efficacy by systematic evaluation through appropriate clinical trials rather than relying on anecdotal evidence from published case reports.


Assuntos
Calcinose , Leucoencefalopatias , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/complicações , Leucoencefalopatias/tratamento farmacológico , Calcinose/diagnóstico por imagem , Calcinose/tratamento farmacológico , Calcinose/cirurgia , Calcinose/complicações , Cistos/cirurgia , Cistos/complicações , Cistos/diagnóstico por imagem , Masculino , Bevacizumab/uso terapêutico , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Feminino , Cistos do Sistema Nervoso Central/cirurgia , Cistos do Sistema Nervoso Central/complicações , Cistos do Sistema Nervoso Central/diagnóstico por imagem , Cistos do Sistema Nervoso Central/tratamento farmacológico
6.
Neurology ; 103(6): e209743, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39173102

RESUMO

Progress in genetic diagnosis and orphan drug legislation has opened doors to new therapies in rare neurogenetic diseases (RNDs). Innovative therapies such as gene therapy can improve patients' quality of life but come with academic, regulatory, and financial challenges. Registries can play a pivotal role in generating evidence to tackle these, but their development requires multidisciplinary knowledge and expertise. This study aims to develop a practical framework for creating and implementing patient registries addressing common challenges and maximizing their impact on care, research, drug development, and regulatory decision making with a focus on RNDs. A comprehensive 3-step literature and qualitative research approach was used to develop the framework. A qualitative systematic literature review was conducted, extracting guidance and practices leading to the draft framework. Subsequently, we interviewed representatives of 5 established international RND registries to add learnings from hands-on experiences to the framework. Expert input on the draft framework was sought in digital multistakeholder focus groups to refine the framework. The literature search; interviews with 5 registries; and focus groups with patient representatives (n = 4), clinicians (n = 6), regulators, health technology assessment (HTA) bodies and payers (n = 7), industry representatives (n = 7), and data/information technology (IT) specialists (n = 5) informed development of the framework. It covers the interests of different stakeholders, purposes for data utilization, data aspects, IT infrastructure, governance, and financing of rare disease registries. Key principles include that data should be rapidly accessible, independent, and trustworthy. Governance should involve multiple stakeholders. In addition, data should be highly descriptive, machine-readable, and accessible through a shared infrastructure and not spread over multiple isolated repositories. Sustainable and independent financing of registries is deemed important but remains challenging because of a lack of widely supported funding models. The proposed framework will guide stakeholders in establishing or improving rare disease registries that fulfill requirements of academics and patients as well as regulators, HTA bodies, and commercial parties. There is a need for more clarity regarding quality requirements for registries in regulatory and HTA context. In addition, independent financing models for registries should be developed, as well as well-defined policies on technical uniformity in health data.


Assuntos
Doenças Raras , Sistema de Registros , Humanos , Doenças Raras/terapia , Doenças do Sistema Nervoso/terapia
7.
Mol Immunol ; 174: 41-46, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182279

RESUMO

Colony stimulating factor 1 receptor (CSF1R) is an essential receptor for both colony stimulating factor 1 (CSF1) and interleukin (IL) 34 signaling expressed on monocyte precursors and myeloid cells, including monocytes, dendritic cells (DC), and microglia. In humans, dominant heterozygous pathogenic variants in CSF1R cause a neurological condition known as CSF1R-related disorder (CSF1R-RD), typically with late onset, previously referred to as adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). CSF1R-RD is characterized by microglia reduction and altered monocyte function; however, the impact of pathogenic CSF1R variants on the human DC lineage remains largely unknown. We previously reported that cord blood CD34+ stem cell-derived DCs generated in vitro originate specifically from CSF1R expressing precursors. In this study, we examined the DC lineage of four unrelated patients with late-onset CSF1R-RD who carried heterozygous missense CSF1R variants (c.2330G>A, c.2375C>A, c.2329C>T, and c.2381T>C) affecting different amino acids in the protein tyrosine kinase domain of CSF1R. CD34+ stem cells and CD14+ monocytes were isolated from peripheral blood and subjected to an in vitro culture protocol to differentiate towards conventional DCs and monocyte-derived DCs, respectively. Flow cytometric analysis revealed that monocytes from patients with late-onset CSF1R-RD were still able to differentiate into monocyte-derived DCs in vitro, whereas the ability of CD34+ stem cells to differentiate into conventional DCs was impaired. Strikingly, the peripheral blood of patients contained all naturally occurring DC subsets. We conclude that the in vitro abrogation of DC-development in patients with heterozygous pathogenic missense CSF1R variants does not translate to an impairment in DC development in vivo and speculate that CSF1R signalling in vivo is compensated, which needs further study.


Assuntos
Antígenos CD34 , Diferenciação Celular , Células Dendríticas , Mutação de Sentido Incorreto , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Humanos , Células Dendríticas/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Feminino , Masculino , Pessoa de Meia-Idade , Heterozigoto , Adulto , Idoso , Monócitos/metabolismo , Células Cultivadas , Receptor de Fator Estimulador de Colônias de Macrófagos
9.
Am J Med Genet A ; : e63800, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934054

RESUMO

We report three siblings homozygous for CSF1R variant c.1969 + 115_1969 + 116del to expand the phenotype of "brain abnormalities, neurodegeneration, and dysosteosclerosis" (BANDDOS) and discuss its link with "adult leukoencephalopathy with axonal spheroids and pigmented glia" (ALSP), caused by heterozygous CSF1R variants. We evaluated medical, radiological, and laboratory findings and reviewed the literature. Patients presented with developmental delay, therapy-resistant epilepsy, dysmorphic features, and skeletal abnormalities. Secondary neurological decline occurred from 23 years in sibling one and from 20 years in sibling two. Brain imaging revealed multifocal white matter abnormalities and calcifications during initial disease in siblings two and three. Developmental brain anomalies, seen in all three, were most severe in sibling two. During neurological decline in siblings one and two, the leukoencephalopathy was progressive and had the MRI appearance of ALSP. Skeletal survey revealed osteosclerosis, most severe in sibling three. Blood markers, monocytes, dendritic cell subsets, and T-cell proliferation capacity were normal. Literature review revealed variable initial disease and secondary neurological decline. BANDDOS presents with variable dysmorphic features, skeletal dysplasia, developmental delay, and epilepsy with on neuro-imaging developmental brain anomalies, multifocal white matter abnormalities, and calcifications. Secondary neurological decline occurs with a progressive leukoencephalopathy, in line with early onset ALSP. Despite the role of CSF1R signaling in myeloid development, immune deficiency is absent. Phenotype varies within families; skeletal and neurological manifestations may be disparate.

10.
Acta Neuropathol Commun ; 12(1): 83, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822428

RESUMO

Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter. We assessed whether these human post-mortem brain slices recapitulate the in vivo neuropathology and if they are suitable for pathophysiological, experimental and pre-clinical treatment development purposes, specifically regarding leukodystrophies. Human post-mortem brain tissue and cerebrospinal fluid were obtained from control, psychiatric and leukodystrophy donors. Slices were cultured up to six weeks, in culture medium with or without human cerebrospinal fluid. Human post-mortem organotypic brain slice cultures remained viable for at least six weeks ex vivo and maintained tissue structure and diversity of (neural) cell types. Supplementation with cerebrospinal fluid could improve slice recovery. Patient-derived organotypic slice cultures recapitulated and maintained known in vivo neuropathology. The cultures also showed physiologic multicellular responses to lysolecithin-induced demyelination ex vivo, indicating their suitability to study intrinsic repair mechanisms upon injury. The slice cultures were applicable for various experimental studies, as multi-electrode neuronal recordings. Finally, the cultures showed successful cell-type dependent transduction with gene therapy vectors. These human post-mortem organotypic brain slice cultures represent an adapted ex vivo model suitable for multifaceted studies of brain disease mechanisms, boosting translation from human ex vivo to in vivo. This model also allows for assessing potential treatment options, including gene therapy applications. Human post-mortem brain slice cultures are thus a valuable tool in preclinical research to study the pathomechanisms of a wide variety of brain diseases in living human tissue.


Assuntos
Encéfalo , Técnicas de Cultura de Órgãos , Humanos , Encéfalo/patologia , Encéfalo/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Substância Branca/patologia , Substância Branca/metabolismo
11.
Free Neuropathol ; 52024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38716347

RESUMO

L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare neurometabolic disorder characterized by accumulation of L2-hydroxyglutarate (L-2-HG) due to mutations in the L2HGDH gene. L-2-HGA patients have a significantly increased lifetime risk of central nervous system (CNS) tumors. Here, we present a 16-year-old girl with L-2-HGA who developed a tumor in the right cerebral hemisphere, which was discovered after left-sided neurological deficits of the patient. Histologically, the tumor had a high-grade diffuse glioma phenotype. DNA sequencing revealed the inactivating homozygous germline L2HGDH mutation as well as inactivating mutations in TP53, BCOR and NF1. Genome-wide DNA-methylation analysis was unable to classify the tumor with high confidence. More detailed analysis revealed that this tumor clustered amongst IDH-wildtype gliomas by methylation profiling and did not show the glioma CpG island methylator phenotype (G-CIMP) in contrast to IDH-mutant diffuse gliomas with accumulated levels of D-2-HG, the stereoisomer of L-2-HD. These findings were against all our expectations given the inhibitory potential of 2-HG on DNA-demethylation enzymes. Our final integrated histomolecular diagnosis of the tumor was diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype. Due to rapid tumor progression the patient died nine months after initial diagnosis. In this manuscript, we provide extensive molecular characterization of the tumor as well as a literature review focusing on oncogenetic considerations of L-2-HGA-associated CNS tumors.

12.
Neurobiol Aging ; 140: 102-115, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763075

RESUMO

Astrocyte heterogeneity and its relation to aging in the normal human brain remain poorly understood. We here analyzed astrocytes in gray and white matter brain tissues obtained from donors ranging in age between the neonatal period to over 100 years. We show that astrocytes are differently distributed with higher density in the white matter. This regional difference in cellular density becomes less prominent with age. Additionally, we confirm the presence of morphologically distinct astrocytes, with gray matter astrocytes being morphologically more complex. Notably, gray matter astrocytes morphologically change with age, while white matter astrocytes remain relatively consistent in morphology. Using regional mass spectrometry-based proteomics, we did, however, identify astrocyte specific proteins with regional differences in abundance, reflecting variation in cellular density or expression level. Importantly, the expression of some astrocyte specific proteins region-dependently decreases with age. Taken together, we provide insights into region- and age-related differences in astrocytes in the human brain.


Assuntos
Envelhecimento , Astrócitos , Substância Cinzenta , Substância Branca , Humanos , Astrócitos/patologia , Astrócitos/metabolismo , Envelhecimento/patologia , Envelhecimento/fisiologia , Substância Cinzenta/patologia , Substância Cinzenta/citologia , Adulto , Idoso , Substância Branca/patologia , Substância Branca/citologia , Adulto Jovem , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Criança , Lactente , Pré-Escolar , Adolescente , Recém-Nascido , Encéfalo/citologia , Encéfalo/patologia , Encéfalo/metabolismo , Proteômica , Masculino , Feminino , Contagem de Células
13.
Cell Mol Life Sci ; 81(1): 234, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789799

RESUMO

Vanishing white matter (VWM) is a leukodystrophy caused by biallelic pathogenic variants in eukaryotic translation initiation factor 2B. To date, it remains unclear which factors contribute to VWM pathogenesis. Here, we investigated the basis of VWM pathogenesis using the 2b5ho mouse model. We first mapped the temporal proteome in the cerebellum, corpus callosum, cortex, and brainstem of 2b5ho and wild-type (WT) mice. Protein changes observed in 2b5ho mice were then cross-referenced with published proteomic datasets from VWM patient brain tissue to define alterations relevant to the human disease. By comparing 2b5ho mice with their region- and age-matched WT counterparts, we showed that the proteome in the cerebellum and cortex of 2b5ho mice was already dysregulated prior to pathology development, whereas proteome changes in the corpus callosum only occurred after pathology onset. Remarkably, protein changes in the brainstem were transient, indicating that a compensatory mechanism might occur in this region. Importantly, 2b5ho mouse brain proteome changes reflect features well-known in VWM. Comparison of the 2b5ho mouse and VWM patient brain proteomes revealed shared changes. These could represent changes that contribute to the disease or even drive its progression in patients. Taken together, we show that the 2b5ho mouse brain proteome is affected in a region- and time-dependent manner. We found that the 2b5ho mouse model partly replicates the human disease at the protein level, providing a resource to study aspects of VWM pathogenesis by highlighting alterations from early to late disease stages, and those that possibly drive disease progression.


Assuntos
Modelos Animais de Doenças , Leucoencefalopatias , Proteoma , Proteômica , Substância Branca , Animais , Camundongos , Humanos , Proteoma/metabolismo , Leucoencefalopatias/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Substância Branca/metabolismo , Substância Branca/patologia , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2B em Eucariotos/genética , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL , Cerebelo/metabolismo , Cerebelo/patologia
14.
J Neurol ; 271(7): 4028-4038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564053

RESUMO

Metachromatic leukodystrophy (MLD) is a neuro-metabolic disorder due to arylsulfatase A deficiency, causing demyelination of the central and peripheral nervous system. Hematopoietic cell transplantation (HCT) can provide a symptomatic and survival benefit for pre-symptomatic and early symptomatic patients by stabilizing CNS disease. This case series, however, illustrates the occurrence of severely progressive polyneuropathy shortly after HCT in two patients with late-infantile, one with late-juvenile, and one with adult MLD, leading to the inability to walk or sit without support. The patients had demyelinating polyneuropathy before HCT, performed at the ages of 2 years in the first two patients and at 14 and 23 years in the other two patients. The myeloablative conditioning regimen consisted of busulfan, fludarabine and, in one case, rituximab, with anti-thymocyte globulin, cyclosporine, steroids, and/or mycophenolate mofetil for GvHD prophylaxis. Polyneuropathy after HCT progressed parallel with tapering immunosuppression and paralleled bouts of infection and graft-versus-host disease (GvHD). Differential diagnoses included MLD progression, neurological GvHD or another (auto)inflammatory cause. Laboratory, electroneurography and pathology investigations were inconclusive. In two patients, treatment with immunomodulatory drugs led to temporary improvement, but not sustained stabilization of polyneuropathy. One patient showed recovery to pre-HCT functioning, except for a Holmes-like tremor, for which a peripheral origin cannot be excluded. One patient showed marginal response to immunosuppressive treatment and died ten months after HCT due to respiratory failure. The extensive diagnostic and therapeutic attempts highlight the challenge of characterizing and treating progressive polyneuropathy in patients with MLD shortly after HCT. We advise to consider repeat electro-neurography and possibly peripheral nerve biopsy in such patients. Nerve conduction blocks, evidence of the presence of T lymphocytes and macrophages in the neuronal and surrounding nerve tissue, and beneficial effects of immunomodulatory drugs may indicate a partially (auto)immune-mediated pathology. Polyneuropathy may cause major residual disease burden after HCT. MLD patients with progressive polyneuropathy could potentially benefit from a more intensified immunomodulatory drug regime following HCT, especially at times of immune activation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucodistrofia Metacromática , Humanos , Leucodistrofia Metacromática/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Feminino , Adulto Jovem , Adolescente , Polineuropatias/etiologia , Polineuropatias/terapia , Progressão da Doença , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/terapia , Pré-Escolar , Adulto
15.
J Inherit Metab Dis ; 47(4): 792-804, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430011

RESUMO

Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder characterized by arylsulfatase A (ASA) deficiency, leading to sulfatide accumulation and myelin degeneration in the central nervous system. While primarily considered a white matter (WM) disease, gray matter (GM) is also affected in MLD, and hematopoietic stem cell transplantation (HSCT) may have limited effect on GM atrophy. We cross-sectionally and longitudinally studied GM volumes using volumetric MRI in a cohort of 36 (late-infantile, juvenile and adult type) MLD patients containing untreated and HSCT treated subjects. Cerebrum, cortical GM, (total) CSF, cerebellum, deep gray matter (DGM) (excluding thalamus) and thalamus volumes were analyzed. Longitudinal correlations with measures of cognitive and motor functioning were assessed. Cross-sectionally, juvenile and adult type patients (infantiles excluded based on limited numbers) were compared with controls at earliest scan, before possible treatment. Patients had lower cerebrum, cortical GM, DGM and thalamus volumes. Differences were most pronounced for adult type patients. Longitudinal analyses showed substantial and progressive atrophy of all regions and increase of CSF in untreated patients. Similar, albeit less pronounced, effects were seen in treated patients for cerebrum, cortical GM, CSF and thalamus volumes. Deterioration in motor performance (all patients) was related to atrophy, and increase of CSF, in all regions. Cognitive functioning (data available for treated patients) was related to cerebral, cortical GM and thalamus atrophy; and to CSF increase. Our findings illustrate the importance of recognizing GM pathology as a potentially substantial, clinically relevant part of MLD, apparently less amenable to treatment.


Assuntos
Atrofia , Substância Cinzenta , Leucodistrofia Metacromática , Imageamento por Ressonância Magnética , Humanos , Leucodistrofia Metacromática/patologia , Leucodistrofia Metacromática/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/diagnóstico por imagem , Atrofia/patologia , Masculino , Feminino , Adulto , Estudos Longitudinais , Adolescente , Adulto Jovem , Criança , Estudos Transversais , Pré-Escolar , Pessoa de Meia-Idade , Transplante de Células-Tronco Hematopoéticas , Lactente , Tálamo/patologia , Tálamo/diagnóstico por imagem , Cognição
16.
Mol Ther ; 32(5): 1328-1343, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454603

RESUMO

Vanishing white matter (VWM) is a fatal leukodystrophy caused by recessive mutations in subunits of the eukaryotic translation initiation factor 2B. Currently, there are no effective therapies for VWM. Here, we assessed the potential of adenine base editing to correct human pathogenic VWM variants in mouse models. Using adeno-associated viral vectors, we delivered intein-split adenine base editors into the cerebral ventricles of newborn VWM mice, resulting in 45.9% ± 5.9% correction of the Eif2b5R191H variant in the cortex. Treatment slightly increased mature astrocyte populations and partially recovered the integrated stress response (ISR) in female VWM animals. This led to notable improvements in bodyweight and grip strength in females; however, locomotor disabilities were not rescued. Further molecular analyses suggest that more precise editing (i.e., lower rates of bystander editing) as well as more efficient delivery of the base editors to deep brain regions and oligodendrocytes would have been required for a broader phenotypic rescue. Our study emphasizes the potential, but also identifies limitations, of current in vivo base-editing approaches for the treatment of VWM or other leukodystrophies.


Assuntos
Dependovirus , Modelos Animais de Doenças , Fator de Iniciação 2B em Eucariotos , Edição de Genes , Leucoencefalopatias , Fenótipo , Animais , Camundongos , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/terapia , Leucoencefalopatias/patologia , Dependovirus/genética , Humanos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Feminino , Mutação , Terapia Genética/métodos , Substância Branca/patologia , Substância Branca/metabolismo , Astrócitos/metabolismo
17.
Brain ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489591

RESUMO

Leukodystrophies are rare genetic white matter disorders that have been regarded as mainly occurring in childhood. Recent years altered this perception, as a growing number of leukodystrophies was described to have an onset at adult ages. Still, many adult patients presenting with white matter changes remain without a specific molecular diagnosis. We describe a novel adult onset leukodystrophy in 16 patients from eight families carrying one of four different stop-gain or frameshift dominant variants in the CST3 gene. Clinical and radiological features differ markedly from the previously described Icelandic Cerebral Amyloid Angiopathy that was found in patients carrying p.Leu68Asn substitution in CST3. The clinical phenotype consists of recurrent episodes of hemiplegic migraine associated with transient unilateral focal deficits and slowly progressing motor symptoms and cognitive decline in mid-old adult ages. In addition, in some cases acute onset clinical deterioration led to a prolonged episode with reduced consciousness and even early death. Radiologically, pathognomonic changes are found at typical predilection sites involving the deep cerebral white matter sparing a periventricular and directly subcortical rim, the middle blade of corpus callosum, posterior limb of the internal capsule, middle cerebellar peduncles, cerebral peduncles, and specifically the globus pallidus. Histopathologic characterization in two autopsy cases did not reveal angiopathy, but instead micro- to macrocystic degeneration of the white matter. Astrocytes were activated at early stages and later on displayed severe degeneration and loss. In addition, despite loss of myelin, elevated numbers of partly apoptotic oligodendrocytes were observed. A structural comparison of the variants in CST3 suggests that specific truncations of Cystatin C result in an abnormal function, possibly by rendering the protein more prone to aggregation. Future studies are required to confirm the assumed effect on the protein and to determine pathophysiologic downstream events at the cellular level.

18.
Front Genet ; 15: 1352947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487253

RESUMO

The leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC) is characterized by infantile-onset macrocephaly and chronic edema of the brain white matter. With delayed onset, patients typically experience motor problems, epilepsy and slow cognitive decline. No treatment is available. Classic MLC is caused by bi-allelic recessive pathogenic variants in MLC1 or GLIALCAM (also called HEPACAM). Heterozygous dominant pathogenic variants in GLIALCAM lead to remitting MLC, where patients show a similar phenotype in early life, followed by normalization of white matter edema and no clinical regression. Rare patients with heterozygous dominant variants in GPRC5B and classic MLC were recently described. In addition, two siblings with bi-allelic recessive variants in AQP4 and remitting MLC have been identified. The last systematic overview of variants linked to MLC dates back to 2006. We provide an updated overview of published and novel variants. We report on genetic variants from 508 patients with MLC as confirmed by MRI diagnosis (258 from our database and 250 extracted from 64 published reports). We describe 151 unique MLC1 variants, 29 GLIALCAM variants, 2 GPRC5B variants and 1 AQP4 variant observed in these MLC patients. We include experiments confirming pathogenicity for some variants, discuss particularly notable variants, and provide an overview of recent scientific and clinical insight in the pathophysiology of MLC.

19.
Front Neurosci ; 18: 1275744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352041

RESUMO

Vanishing white matter (VWM) is a devastating autosomal recessive leukodystrophy, resulting in neurological deterioration and premature death, and without curative treatment. Pathogenic hypomorphic variants in subunits of the eukaryotic initiation factor 2B (eIF2B) cause VWM. eIF2B is required for regulating the integrated stress response (ISR), a physiological response to cellular stress. In patients' central nervous system, reduced eIF2B activity causes deregulation of the ISR. In VWM mouse models, the extent of ISR deregulation correlates with disease severity. One approach to restoring eIF2B activity is by inhibition of GSK3ß, a kinase that phosphorylates eIF2B and reduces its activity. Lithium, an inhibitor of GSK3ß, is thus expected to stimulate eIF2B activity and ameliorate VWM symptoms. The effects of lithium were tested in zebrafish and mouse VWM models. Lithium improved motor behavior in homozygous eif2b5 mutant zebrafish. In lithium-treated 2b4he2b5ho mutant mice, a paradoxical increase in some ISR transcripts was found. Furthermore, at the dosage tested, lithium induced significant polydipsia in both healthy controls and 2b4he2b5ho mutant mice and did not increase the expression of other markers of lithium efficacy. In conclusion, lithium is not a drug of choice for further development in VWM based on the limited or lack of efficacy and significant side-effect profile.

20.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171595

RESUMO

The leukodystrophy vanishing white matter (VWM) is characterized by chronic and episodic acute neurological deterioration. Curative treatment is presently unavailable. Pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B) cause VWM and deregulate the integrated stress response (ISR). Previous studies in VWM mouse models showed that several ISR-targeting compounds ameliorate clinical and neuropathological disease hallmarks. It is unclear which ISR components are suitable therapeutic targets. In this study, effects of 4-phenylbutyric acid, tauroursodeoxycholic acid, or pridopidine (PDPD), with ISR targets upstream or downstream of eIF2B, were assessed in VWM mice. In addition, it was found that the composite ataxia score represented motor decline of VWM mice more accurately than the previously used neuroscore. 4-phenylbutyric acid and tauroursodeoxycholic acid did not improve VWM disease hallmarks, whereas PDPD had subtle beneficial effects on motor skills. PDPD alone does not suffice as treatment in VWM mice but may be considered for combination therapy. Also, treatments aimed at ISR components upstream of eIF2B do not improve chronic neurological deterioration; effects on acute episodic decline remain to be investigated.


Assuntos
Fator de Iniciação 2B em Eucariotos , Substância Branca , Camundongos , Animais , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Substância Branca/patologia , Destreza Motora , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA