Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 353: 490-506, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36460179

RESUMO

Therapeutic cancer drug efficacy can be limited by insufficient tumor penetration, rapid clearance, systemic toxicity and (acquired) drug resistance. The poor therapeutic index due to inefficient drug penetration and rapid drug clearance and toxicity can be improved by using a liposomal platform. Drug resistance for instance against pemetrexed, can be reduced by combination with docetaxel. Here, we developed a specific liposomal formulation to simultaneously deliver docetaxel and pemetrexed to enhance efficacy and safety. Hydrophobic docetaxel and hydrophilic pemetrexed were co-encapsulated into pH-sensitive liposomes using a thin-film hydration method with high efficiency. The physicochemical properties, toxicity, and immunological effects of liposomes were examined in vitro. Biodistribution, anti-tumor efficacy, and systemic immune response were evaluated in vivo in combination with PD-L1 immune checkpoint therapy using two murine colon cancer models. In cellular experiments, the liposomes exhibited strong cytotoxicity and induced immunogenic cell death. In vivo, the treatment with the liposome-based drug combination inhibited tumor development and stimulated immune responses. Liposomal encapsulation significantly reduced systemic toxicity compared to the delivery of the free drug. Tumor control was strongly enhanced when combined with anti-PDL1 immunotherapy in immunocompetent mice carrying syngeneic MC38 or CT26 colon tumors. We showed that treatment with liposome-mediated chemotherapy of docetaxel and pemetrexed combined with anti-PD-L1 immunotherapy is a promising strategy for the treatment of colon cancers.


Assuntos
Neoplasias do Colo , Lipossomos , Animais , Camundongos , Lipossomos/química , Docetaxel/uso terapêutico , Pemetrexede/uso terapêutico , Distribuição Tecidual , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular Tumoral
2.
J Pharm Sci ; 111(4): 1070-1080, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122832

RESUMO

Most influenza vaccines are administered via intramuscular injection which has several disadvantages that might jeopardize the compliance of vaccinees. Intradermal administration of dissolving-microneedle-arrays (dMNAs) could serve as minimal invasive alternative to needle injections. However, during the production process of dMNAs antigens are subjected to several stresses, which may reduce their potency. Moreover, the needles need to have sufficient mechanical strength to penetrate the skin and subsequently dissolve effectively to release the incorporated antigen. Here, we investigated whether blends of trehalose and pullulan are suitable for the production of stable dMNA fulfilling these criteria. Our results demonstrate that production of trehalose/pullulan-based dMNAs rendered microneedles that were sharp and stiff enough to pierce into ex vivo human skin and subsequently dissolve within 15 min. The mechanical properties of the dMNAs were maintained well even after four weeks of storage at temperatures up to 37°C. In addition, immunization of mice with influenza antigens via both freshly prepared dMNAs and dMNAs after storage (four weeks at 4°C or 37°C) resulted in antibody titers of similar magnitude as found in intramuscularly injected mice and partially protected mice from influenza virus infection. Altogether, our results demonstrate the potential of trehalose/pullulan-based dMNAs as alternative dosage form for influenza vaccination.


Assuntos
Vacinas contra Influenza , Influenza Humana , Administração Cutânea , Animais , Antígenos , Glucanos , Humanos , Influenza Humana/prevenção & controle , Camundongos , Agulhas , Trealose , Vacinação/métodos
3.
Langmuir ; 35(22): 7121-7128, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31045370

RESUMO

For pharmaceutical, biological, and biomedical applications, the functionalization of gold surfaces with pH-sensitive groups has great potential. The aim of this work was to modify gold surfaces with pH-sensitive groups and to determine the p Ka of the modified gold surfaces using a fluorescent nanoparticle adhesion assay. To introduce pH-sensitive groups onto gold surfaces, we modified gold-coated silicon slides with four different bases: 4-mercaptopyridine (4-MP), 4-pyridylethylmercaptan (4-PEM), 4-aminothiophenol (4-ATP), and 2-mercaptoethylamine (2-MEA). To screen whether the modifications were successful, the binding of negatively charged fluorescently labeled nanoparticles to the positively charged surfaces was visualized by fluorescence microscopy and atomic force microscopy. Next, the p Ka of the modified surfaces was determined by quantifying the pH-dependent adhesion of the fluorescently labeled nanoparticles with fluorescence spectroscopy. Fluorescence microscopy showed that the gold surfaces were successfully modified with the four different basic molecules. Moreover, fluorescence spectroscopy revealed that fluorescently labeled negatively charged nanoparticles bound onto gold surfaces that were modified with one of the four bases in a pH-dependent manner. By quantifying the adsorption of negatively charged fluorescently labeled nanoparticles onto the functionalized gold surfaces and using the Henderson-Hasselbalch equation, the p Ka of these surfaces was determined to be 3.7 ± 0.1 (4-MP), 5.0 ± 0.1 (4-PEM), 5.4 ± 0.1 (4-ATP), and 7.4 ± 0.3 (2-MEA). We successfully functionalized gold surfaces with four different basic molecules, yielding modified surfaces with different p Ka values, as determined with a fluorescent nanoparticle adhesion assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...