Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am J Hum Genet ; 111(4): 791-804, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38503300

RESUMO

Mutations in proteasome ß-subunits or their chaperone and regulatory proteins are associated with proteasome-associated autoinflammatory disorders (PRAAS). We studied six unrelated infants with three de novo heterozygous missense variants in PSMB10, encoding the proteasome ß2i-subunit. Individuals presented with T-B-NK± severe combined immunodeficiency (SCID) and clinical features suggestive of Omenn syndrome, including diarrhea, alopecia, and desquamating erythematous rash. Remaining T cells had limited T cell receptor repertoires, a skewed memory phenotype, and an elevated CD4/CD8 ratio. Bone marrow examination indicated severely impaired B cell maturation with limited V(D)J recombination. All infants received an allogeneic stem cell transplant and exhibited a variety of severe inflammatory complications thereafter, with 2 peri-transplant and 2 delayed deaths. The single long-term transplant survivor showed evidence for genetic rescue through revertant mosaicism overlapping the affected PSMB10 locus. The identified variants (c.166G>C [p.Asp56His] and c.601G>A/c.601G>C [p.Gly201Arg]) were predicted in silico to profoundly disrupt 20S immunoproteasome structure through impaired ß-ring/ß-ring interaction. Our identification of PSMB10 mutations as a cause of SCID-Omenn syndrome reinforces the connection between PRAAS-related diseases and SCID.


Assuntos
Imunodeficiência Combinada Severa , Lactente , Humanos , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Mutação/genética , Linfócitos T/metabolismo , Mutação de Sentido Incorreto/genética
2.
J Clin Immunol ; 44(2): 44, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231408

RESUMO

Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.


Assuntos
Artrite , Síndrome de Behçet , Produtos Biológicos , Doenças Inflamatórias Intestinais , Masculino , Humanos , Síndrome de Behçet/diagnóstico , Síndrome de Behçet/genética , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Artralgia , Proteínas de Ligação a DNA , Fatores de Transcrição/genética
3.
J Clin Immunol ; 44(1): 10, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129331

RESUMO

Here, we describe an adult female with severe fasciitis and skin necrosis who carried a private, predicted deleterious missense mutation in OTULIN in heterozygosity. OTULIN is a cellular regulator of deubiquitination that has been shown to play a key role in intrinsic immunity against staphylococcal α-toxin. The patient was treated with broad-spectrum antibiotics, and multiple surgical explorations were conducted without clinical response. Since autoinflammation was the predominant clinical feature, TNF inhibition was started with a good clinical response. We show that excessive inflammation in OTULIN haploinsufficiency can be effectively treated by TNF inhibition.


Assuntos
Fasciite , Haploinsuficiência , Feminino , Humanos , Inflamação/genética , Necrose , Ubiquitinação
4.
J Exp Med ; 220(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37773045

RESUMO

Central B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides. The in vivo production of CXCL4 thereby impedes both TLR9 responses in B cells and the establishment of central B cell tolerance. We conclude that TLR9 plays an essential early tolerogenic function required for the establishment of central B cell tolerance and that correcting defective TLR9 function in B cells from SSc patients may represent a novel therapeutic strategy to restore B cell tolerance.


Assuntos
Fator Plaquetário 4 , Escleroderma Sistêmico , Receptor Toll-Like 9 , Animais , Humanos , Camundongos , Linfócitos B , Ligantes , Fator 88 de Diferenciação Mieloide/metabolismo , Fator Plaquetário 4/metabolismo , Escleroderma Sistêmico/metabolismo , Receptor 7 Toll-Like , Receptor Toll-Like 9/metabolismo
5.
Front Immunol ; 14: 1233318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614228

RESUMO

Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated. Objective: We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients. Methods: Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed. Results: Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses. Conclusion: We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.


Assuntos
COVID-19 , Interferon Tipo I , Humanos , Citocinas , Leucócitos Mononucleares , Ligantes , Proteômica , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Fator de Necrose Tumoral alfa , Dexametasona/farmacologia , Dexametasona/uso terapêutico
6.
EBioMedicine ; 95: 104736, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524002

RESUMO

BACKGROUND: Children with SARS-CoV-2 related Multisystem Inflammatory Syndrome in Children (MIS-C) often present with clinical features that resemble Kawasaki disease (KD). Disease severity in adult COVID-19 is associated to the presence of anti-cytokine autoantibodies (ACAAs) against type I interferons. Similarly, ACAAs may be implicated in KD and MIS-C. Therefore, we explored the immunological response, presence of ACAAs and disease correlates in both disorders. METHODS: Eighteen inflammatory plasma protein levels and seven ACAAs were measured in KD (n = 216) and MIS-C (n = 56) longitudinally by Luminex and/or ELISA. Levels (up to 1 year post-onset) of these proteins were related to clinical data and compared with healthy paediatric controls. FINDINGS: ACAAs were found in both patient groups. The presence of ACAAs lagged behind the inflammatory plasma proteins and peaked in the subacute phase. ACAAs were mostly directed against IFN-γ (>80%) and were partially neutralising at best. KD presented with a higher variety of ACAAs than MIS-C. Increased levels of anti-IL-17A (P = 0·02) and anti-IL-22 (P = 0·01) were inversely associated with ICU admission in MIS-C. Except for CXCL10 in MIS-C (P = 0·002), inflammatory plasma proteins were elevated in both KD and MIS-C. Endothelial angiopoietin-2 levels were associated with coronary artery aneurysms in KD (P = 0·02); and sCD25 (P = 0·009), angiopoietin-2 (P = 0·001), soluble IL-33-receptor (ST2, P = 0·01) and CXCL10 (P = 0·02) with ICU admission in MIS-C. INTERPRETATION: Markers of endothelial activation (E-selectin, angiopoietin-2), and innate and adaptive immune responses (macrophages [CD163, G-CSF], neutrophils [lipocalin-2], and T cells [IFN-γ, CXCL10, IL-6, IL-17]), are upregulated in KD and MIS-C. ACAAs were detected in both diseases and, although only partly neutralising, their transient presence and increased levels in non-ICU patients may suggest a dampening role on inflammation. FUNDING: The Kawasaki study is funded by the Dutch foundation Fonds Kind & Handicap and an anonymous donor. The sponsors had no role in the study design, analysis, or decision for publication.


Assuntos
COVID-19 , Síndrome de Linfonodos Mucocutâneos , Adulto , Humanos , Criança , Citocinas , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Angiopoietina-2 , Estudos de Coortes , SARS-CoV-2 , Autoanticorpos
7.
BMC Genomics ; 24(1): 305, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280537

RESUMO

Our incomplete knowledge of the human transcriptome impairs the detection of disease-causing variants, in particular if they affect transcripts only expressed under certain conditions. These transcripts are often lacking from reference transcript sets, such as Ensembl/GENCODE and RefSeq, and could be relevant for establishing genetic diagnoses. We present SUsPECT (Solving Unsolved Patient Exomes/gEnomes using Custom Transcriptomes), a pipeline based on the Ensembl Variant Effect Predictor (VEP) to predict variant impact on custom transcript sets, such as those generated by long-read RNA-sequencing, for downstream prioritization. Our pipeline predicts the functional consequence and likely deleteriousness scores for missense variants in the context of novel open reading frames predicted from any transcriptome. We demonstrate the utility of SUsPECT by uncovering potential mutational mechanisms of pathogenic variants in ClinVar that are not predicted to be pathogenic using the reference transcript annotation. In further support of SUsPECT's utility, we identified an enrichment of immune-related variants predicted to have a more severe molecular consequence when annotating with a newly generated transcriptome from stimulated immune cells instead of the reference transcriptome. Our pipeline outputs crucial information for further prioritization of potentially disease-causing variants for any disease and will become increasingly useful as more long-read RNA sequencing datasets become available.


Assuntos
Software , Transcriptoma , Humanos , Anotação de Sequência Molecular , Análise de Sequência de RNA/métodos , Exoma , Sequenciamento de Nucleotídeos em Larga Escala
8.
N Engl J Med ; 389(6): 527-539, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37342957

RESUMO

BACKGROUND: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown. METHODS: We conducted genetic, immunologic, and molecular assays in four patients from four unrelated families who presented with infections, early-onset severe immune dysregulation, normocytic anemia of variable severity associated with anisopoikilocytosis, and developmental delay. Functional assays were performed in patient-derived cells, as well as in mouse and zebrafish models. RESULTS: We identified rare, X-linked germline mutations in DOCK11 in the patients, leading to a loss of protein expression in two patients and impaired CDC42 activation in all four patients. Patient-derived T cells did not form filopodia and showed abnormal migration. In addition, the patient-derived T cells, as well as the T cells from Dock11-knockout mice, showed overt activation and production of proinflammatory cytokines that were associated with an increased degree of nuclear translocation of nuclear factor of activated T cell 1 (NFATc1). Anemia and aberrant erythrocyte morphologic features were recapitulated in a newly generated dock11-knockout zebrafish model, and anemia was amenable to rescue on ectopic expression of constitutively active CDC42. CONCLUSIONS: Germline hemizygous loss-of-function mutations affecting the actin regulator DOCK11 were shown to cause a previously unknown inborn error of hematopoiesis and immunity characterized by severe immune dysregulation and systemic inflammation, recurrent infections, and anemia. (Funded by the European Research Council and others.).


Assuntos
Actinas , Anemia , Fatores de Troca do Nucleotídeo Guanina , Inflamação , Animais , Humanos , Camundongos , Actinas/genética , Actinas/metabolismo , Anemia/etiologia , Anemia/genética , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Hematopoese , Inflamação/etiologia , Inflamação/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Ned Tijdschr Geneeskd ; 1672023 04 19.
Artigo em Holandês | MEDLINE | ID: mdl-37078566

RESUMO

BACKGROUND: VEXAS-syndrome is an X-linked acquired multisystemic autoinflammatory disease caused by a somatic mutation in UBA1. CASE DESCRIPTION: In this manuscript we describe a 79-year-old male suffering from skin lesions, macrocytic anemia and lab results showing inflammation in which, based on finding a mutation in UBA1, VEXAS was diagnosed. He was treated with a combination of high dose corticosteroids and anti-IL-6 with good response. CONCLUSION: In middle aged males presenting with multisystemic inflammation without evidence of infection a diagnosis of VEXAS should be considered, especially if there is evidence of a macrocytic anemia. Early testing for UBA1 mutations helps in making the diagnosis. Despite treatment with intensive immunosuppression mortality remains high.


Assuntos
Anemia Macrocítica , Anemia , Masculino , Pessoa de Meia-Idade , Humanos , Idoso , Anemia/diagnóstico , Anemia/etiologia , Inflamação , Mutação
10.
J Exp Med ; 220(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36884218

RESUMO

STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder.


Assuntos
Asma , Hipersensibilidade Alimentar , Humanos , Fator de Transcrição STAT6 , Mutação com Ganho de Função , Imunoglobulina E/genética
11.
Biomolecules ; 13(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671517

RESUMO

Several studies have identified rare and common genetic variants associated with severe COVID-19, but no study has reported genetic determinants as predisposition factors for neurological complications. In this report, we identified rare/unique structural variants (SVs) implicated in neurological functions in two individuals with neurological manifestations of COVID-19. This report highlights the possible genetic link to the neurological symptoms with COVID-19 and calls for a collective effort to study these cohorts for a possible genetic linkage.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Humanos , COVID-19/complicações , COVID-19/genética , Predisposição Genética para Doença , Doenças do Sistema Nervoso/genética , Genótipo
12.
Cytokine ; 162: 156102, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36476991

RESUMO

INTRODUCTION: Chronic inflammatory or autoimmune diseases are commonly treated with immunosuppressive medication such as NSAIDs, corticosteroids, or antibodies against specific cytokines (TNF, IL-1 IL-17, IL-23, etc.) or signalling cascades (e.g. JAK-STAT inhibitors). Using sequencing data to locate genetic mutations in relevant genes allows the identification of alternative targets in a patient-tailored therapy setting. Interleukin (IL)-37 is an anti-inflammatory cytokine with broad effects on innate and adaptive immune cell function. Dysfunctional IL-37 expression or signalling is linked to various autoinflammatory disorders. The administration of recombinant IL-37 to hyperinflammatory patients that are non-responsive to standard treatment bears the potential to alleviate symptoms. METHODS: In this case study, the (hyper)responsiveness of immune cell subsets was investigated in a single patient with a seronegative autoimmune disorder who carries a heterozygous stop-gain variant in IL37 (IL37 Chr2(GRCh37):g.113670640G > A NM_014439.3:c.51G > A p.(Trp17*)). As the patient has been non-responsive to blockage of TNF or IL-1 by Etanercept or Anakinra, respectively, additional in-vitro experiments were set out to elucidate whether treatment with recombinant IL-37 could normalise observed immune cell functions. FINDINGS: Characterisation of immune cell function showed no elevated overall production of acute-phase pro-inflammatory cytokines by patient PBMCs and neutrophils at baseline or upon stimulation. T-cell responses were elevated, as was the metabolic activity and IL-1Ra production of PBMCs at baseline. The identified stop-gain variant in IL37 does not result in the absence of the protein in circulation. In line with this, treatment with recombinant IL-37 did overall not dampen immune responses with the exception of the complete suppression of IL-17. CONCLUSION: The heterozygous stop-gain variant in IL37 (IL37 NM_014439.3:c.51G > A p.(Trp17*)) is not of functional relevance as we observed no clear pro-inflammatory phenotype in immune cells of a patient carrying this variant.


Assuntos
Interleucina-17 , Interleucina-1 , Humanos , Interleucina-1/metabolismo , Interleucina-17/genética , Citocinas/genética , Inflamação , Expressão Gênica
13.
Elife ; 112022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250618

RESUMO

Background: De novo variants (DNVs) are currently not routinely evaluated as part of diagnostic whole exome sequencing (WES) analysis in patients with suspected inborn errors of immunity (IEI). Methods: This study explored the potential added value of systematic assessment of DNVs in a retrospective cohort of 123 patients with a suspected sporadic IEI that underwent patient-parent trio-based WES. Results: A (likely) molecular diagnosis for (part) of the immunological phenotype was achieved in 12 patients with the diagnostic in silico IEI WES gene panel. Systematic evaluation of rare, non-synonymous DNVs in coding or splice site regions led to the identification of 14 candidate DNVs in genes with an annotated immune function. DNVs were found in IEI genes (NLRP3 and RELA) and in potentially novel candidate genes, including PSMB10, DDX1, KMT2C, and FBXW11. The FBXW11 canonical splice site DNV was shown to lead to defective RNA splicing, increased NF-κB p65 signalling, and elevated IL-1ß production in primary immune cells extracted from the patient with autoinflammatory disease. Conclusions: Our findings in this retrospective cohort study advocate the implementation of trio-based sequencing in routine diagnostics of patients with sporadic IEI. Furthermore, we provide functional evidence supporting a causal role for FBXW11 loss-of-function mutations in autoinflammatory disease. Funding: This research was supported by grants from the European Union, ZonMW and the Radboud Institute for Molecular Life Sciences.


Assuntos
Exoma , Doenças Hereditárias Autoinflamatórias , Humanos , Sequenciamento do Exoma , Estudos Retrospectivos , Análise de Sequência de DNA , Doenças Hereditárias Autoinflamatórias/genética
14.
Genome Med ; 14(1): 96, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986347

RESUMO

Since the start of the coronavirus disease 2019 (COVID-19) pandemic, important insights have been gained into virus biology and the host factors that modulate the human immune response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 displays a highly variable clinical picture that ranges from asymptomatic disease to lethal pneumonia. Apart from well-established general risk factors such as advanced age, male sex and chronic comorbidities, differences in host genetics have been shown to influence the individual predisposition to develop severe manifestations of COVID-19. These differences range from common susceptibility loci to rare genetic variants with strongly predisposing effects, or proven pathogenic variants that lead to known or novel inborn errors of immunity (IEI), which constitute a growing group of heterogeneous Mendelian disorders with increased susceptibility to infectious disease, auto-inflammation, auto-immunity, allergy or malignancies. The current genetic findings point towards a convergence of common and rare genetic variants that impact the interferon signalling pathways in patients with severe or critical COVID-19. Monogenic risk factors that impact IFN-I signalling have an expected prevalence between 1 and 5% in young, previously healthy individuals (<60 years of age) with critical COVID-19. The identification of these IEI such as X-linked TLR7 deficiency indicates a possibility for targeted genetic screening and personalized clinical management. This review aims to provide an overview of our current understanding of the host genetic factors that predispose to severe manifestations of COVID-19 and focuses on rare variants in IFN-I signalling genes and their potential clinical implications.


Assuntos
COVID-19 , Antivirais , COVID-19/genética , Variação Genética , Humanos , Masculino , Pandemias , SARS-CoV-2
15.
Front Immunol ; 13: 838132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464396

RESUMO

The majority of COVID-19 patients experience mild to moderate disease course and recover within a few weeks. An increasing number of studies characterized the long-term changes in the specific anti-SARS-CoV-2 immune responses, but how COVID-19 shapes the innate and heterologous adaptive immune system after recovery is less well known. To comprehensively investigate the post-SARS-CoV-2 infection sequelae on the immune system, we performed a multi-omics study by integrating single-cell RNA-sequencing, single-cell ATAC-sequencing, genome-wide DNA methylation profiling, and functional validation experiments in 14 convalescent COVID-19 and 15 healthy individuals. We showed that immune responses generally recover without major sequelae after COVID-19. However, subtle differences persist at the transcriptomic level in monocytes, with downregulation of the interferon pathway, while DNA methylation also displays minor changes in convalescent COVID-19 individuals. However, these differences did not affect the cytokine production capacity of PBMCs upon different bacterial, viral, and fungal stimuli, although baseline release of IL-1Ra and IFN-γ was higher in convalescent individuals. In conclusion, we propose that despite minor differences in epigenetic and transcriptional programs, the immune system of convalescent COVID-19 patients largely recovers to the homeostatic level of healthy individuals.


Assuntos
COVID-19 , Convalescença , Progressão da Doença , Humanos , Leucócitos Mononucleares , SARS-CoV-2
16.
iScience ; 25(2): 103760, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35036860

RESUMO

Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in nine patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with interindividual variability in COVID-19 phenotypes.

17.
J Allergy Clin Immunol ; 149(1): 432-439.e4, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34048852

RESUMO

BACKGROUND: A novel autoinflammatory syndrome was recently described in male patients who harbored somatic mutations in the X-chromosomal UBA1 gene. These patients were characterized by adult-onset, treatment-refractory inflammation with fever, cytopenia, dysplastic bone marrow, vacuoles in myeloid and erythroid progenitor cells, cutaneous and pulmonary inflammation, chondritis, and vasculitis, which is abbreviated as VEXAS. OBJECTIVE: This study aimed to (retrospectively) diagnose VEXAS in patients who had previously been registered as having unclassified autoinflammation. We furthermore aimed to describe clinical experiences with this multifaceted, complex disease. METHODS: A systematic reanalysis of whole-exome sequencing data from a cohort of undiagnosed patients with autoinflammation from academic hospitals in The Netherlands was performed. When no sequencing data were available, targeted Sanger sequencing was applied in cases with high clinical suspicion of VEXAS. RESULTS: A total of 12 male patients who carried mutations in UBA1 were identified. These patients presented with adult-onset (mean age 67 years, range 47-79 years) autoinflammation with systemic symptoms, elevated inflammatory parameters, and multiorgan involvement, most typically involving the skin and bone marrow. Novel features of VEXAS included interstitial nephritis, cardiac involvement, stroke, and intestinal perforation related to treatment with tocilizumab. Although many types of treatment were initiated, most patients became treatment-refractory, with a high mortality rate of 50%. CONCLUSION: VEXAS should be considered in the differential diagnosis of males with adult-onset autoinflammation characterized by systemic symptoms and multiorgan involvement. Early diagnosis can prevent unnecessary diagnostic procedures and provide better prognostic information and more suitable treatment options, including stem cell transplantation.


Assuntos
Doenças Hereditárias Autoinflamatórias/genética , Síndromes Mielodisplásicas/genética , Dermatopatias Genéticas/genética , Enzimas Ativadoras de Ubiquitina/genética , Adulto , Idade de Início , Idoso , Doenças Hereditárias Autoinflamatórias/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/diagnóstico , Países Baixos , Estudos Retrospectivos , Dermatopatias Genéticas/diagnóstico
18.
Front Immunol ; 12: 719115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367187

RESUMO

Introduction: Loss-of-function TLR7 variants have been recently reported in a small number of males to underlie strong predisposition to severe COVID-19. We aimed to determine the presence of these rare variants in young men with severe COVID-19. Methods: We prospectively studied males between 18 and 50 years-old without predisposing comorbidities that required at least high-flow nasal oxygen to treat COVID-19. The coding region of TLR7 was sequenced to assess the presence of potentially deleterious variants. Results: TLR7 missense variants were identified in two out of 14 patients (14.3%). Overall, the median age was 38 (IQR 30-45) years. Both variants were not previously reported in population control databases and were predicted to be damaging by in silico predictors. In a 30-year-old patient a maternally inherited variant [c.644A>G; p.(Asn215Ser)] was identified, co-segregating in his 27-year-old brother who also contracted severe COVID-19. A second variant [c.2797T>C; p.(Trp933Arg)] was found in a 28-year-old patient, co-segregating in his 24-year-old brother who developed mild COVID-19. Functional testing of this variant revealed decreased type I and II interferon responses in peripheral mononuclear blood cells upon stimulation with the TLR7 agonist imiquimod, confirming a loss-of-function effect. Conclusions: This study supports a rationale for the genetic screening for TLR7 variants in young men with severe COVID-19 in the absence of other relevant risk factors. A diagnosis of TLR7 deficiency could not only inform on treatment options for the patient, but also enables pre-symptomatic testing of at-risk male relatives with the possibility of instituting early preventive and therapeutic interventions.


Assuntos
COVID-19/genética , Mutação de Sentido Incorreto , SARS-CoV-2 , Receptor 7 Toll-Like/genética , Adulto , Substituição de Aminoácidos , COVID-19/imunologia , COVID-19/patologia , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Índice de Gravidade de Doença , Receptor 7 Toll-Like/imunologia
19.
Clin Rev Allergy Immunol ; 61(2): 212-225, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33666867

RESUMO

Primary immunodeficiencies comprise a group of inborn errors of immunity that display significant clinical and genetic heterogeneity. Next-generation sequencing techniques and predominantly whole exome sequencing have revolutionized the understanding of the genetic and molecular basis of genetic diseases, thereby also leading to a sharp increase in the discovery of new genes associated with primary immunodeficiencies. In this review, we discuss the current diagnostic yield of this generic diagnostic approach by evaluating the studies that have employed next-generation sequencing techniques in cohorts of patients with primary immunodeficiencies. The average diagnostic yield for primary immunodeficiencies is determined to be 29% (range 10-79%) and 38% specifically for whole-exome sequencing (range 15-70%). The significant variation between studies is mainly the result of differences in clinical characteristics of the studied cohorts but is also influenced by varying sequencing approaches and (in silico) gene panel selection. We further discuss other factors contributing to the relatively low yield, including the inherent limitations of whole-exome sequencing, challenges in the interpretation of novel candidate genetic variants, and promises of exploring the non-coding part of the genome. We propose strategies to improve the diagnostic yield leading the way towards expanded personalized treatment in PIDs.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/tendências , Doenças da Imunodeficiência Primária/genética , Animais , Heterogeneidade Genética , Humanos
20.
JAMA ; 324(7): 663-673, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32706371

RESUMO

Importance: Severe coronavirus disease 2019 (COVID-19) can occur in younger, predominantly male, patients without preexisting medical conditions. Some individuals may have primary immunodeficiencies that predispose to severe infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Objective: To explore the presence of genetic variants associated with primary immunodeficiencies among young patients with COVID-19. Design, Setting, and Participants: Case series of pairs of brothers without medical history meeting the selection criteria of young (age <35 years) brother pairs admitted to the intensive care unit (ICU) due to severe COVID-19. Four men from 2 unrelated families were admitted to the ICUs of 4 hospitals in the Netherlands between March 23 and April 12, 2020. The final date of follow-up was May 16, 2020. Available family members were included for genetic variant segregation analysis and as controls for functional experiments. Exposure: Severe COVID-19. Main Outcome and Measures: Results of rapid clinical whole-exome sequencing, performed to identify a potential monogenic cause. Subsequently, basic genetic and immunological tests were performed in primary immune cells isolated from the patients and family members to characterize any immune defects. Results: The 4 male patients had a mean age of 26 years (range, 21-32), with no history of major chronic disease. They were previously well before developing respiratory insufficiency due to severe COVID-19, requiring mechanical ventilation in the ICU. The mean duration of ventilatory support was 10 days (range, 9-11); the mean duration of ICU stay was 13 days (range, 10-16). One patient died. Rapid clinical whole-exome sequencing of the patients and segregation in available family members identified loss-of-function variants of the X-chromosomal TLR7. In members of family 1, a maternally inherited 4-nucleotide deletion was identified (c.2129_2132del; p.[Gln710Argfs*18]); the affected members of family 2 carried a missense variant (c.2383G>T; p.[Val795Phe]). In primary peripheral blood mononuclear cells from the patients, downstream type I interferon (IFN) signaling was transcriptionally downregulated, as measured by significantly decreased mRNA expression of IRF7, IFNB1, and ISG15 on stimulation with the TLR7 agonist imiquimod as compared with family members and controls. The production of IFN-γ, a type II IFN, was decreased in patients in response to stimulation with imiquimod. Conclusions and Relevance: In this case series of 4 young male patients with severe COVID-19, rare putative loss-of-function variants of X-chromosomal TLR7 were identified that were associated with impaired type I and II IFN responses. These preliminary findings provide insights into the pathogenesis of COVID-19.


Assuntos
COVID-19/virologia , Mutação com Perda de Função , SARS-CoV-2/genética , Adulto , Ensaio de Imunoadsorção Enzimática , Evolução Fatal , Hospitalização , Humanos , Unidades de Terapia Intensiva , Leucócitos Mononucleares , Masculino , Países Baixos , Linhagem , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/isolamento & purificação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...