Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
2.
Nat Commun ; 15(1): 2557, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519488

RESUMO

Microbiome engineering - the targeted manipulation of microbial communities - is considered a promising strategy to restore ecosystems, but experimental support and mechanistic understanding are required. Here, we show that bacterial inoculants for soil microbiome engineering may fail to establish because they inadvertently facilitate growth of native resident microbiomes. By generating soil microcosms in presence or absence of standardized soil resident communities, we show how different nutrient availabilities limit outgrowth of focal bacterial inoculants (three Pseudomonads), and how this might be improved by adding an artificial, inoculant-selective nutrient niche. Through random paired interaction assays in agarose micro-beads, we demonstrate that, in addition to direct competition, inoculants lose competitiveness by facilitating growth of resident soil bacteria. Metatranscriptomics experiments with toluene as selective nutrient niche for the inoculant Pseudomonas veronii indicate that this facilitation is due to loss and uptake of excreted metabolites by resident taxa. Generation of selective nutrient niches for inoculants may help to favor their proliferation for the duration of their intended action while limiting their competitive loss.


Assuntos
Inoculantes Agrícolas , Microbiota , Solo , Bactérias/genética , Proliferação de Células , Microbiologia do Solo
3.
Clin Infect Dis ; 78(4): 922-929, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38330166

RESUMO

BACKGROUND: The 2023 Duke-International Society of Cardiovascular Infectious Diseases (ISCVID) criteria for infective endocarditis (IE) were introduced to improve classification of IE for research and clinical purposes. External validation studies are required. METHODS: We studied consecutive patients with suspected IE referred to the IE team of Amsterdam University Medical Center (from October 2016 to March 2021). An international expert panel independently reviewed case summaries and assigned a final diagnosis of "IE" or "not IE," which served as the reference standard, to which the "definite" Duke-ISCVID classifications were compared. We also evaluated accuracy when excluding cardiac surgical and pathologic data ("clinical" criteria). Finally, we compared the 2023 Duke-ISCVID with the 2000 modified Duke criteria and the 2015 and 2023 European Society of Cardiology (ESC) criteria. RESULTS: A total of 595 consecutive patients with suspected IE were included: 399 (67%) were adjudicated as having IE; 111 (19%) had prosthetic valve IE, and 48 (8%) had a cardiac implantable electronic device IE. The 2023 Duke-ISCVID criteria were more sensitive than either the modified Duke or 2015 ESC criteria (84.2% vs 74.9% and 80%, respectively; P < .001) without significant loss of specificity. The 2023 Duke-ISCVID criteria were similarly sensitive but more specific than the 2023 ESC criteria (94% vs 82%; P < .001). The same pattern was seen for the clinical criteria (excluding surgical/pathologic results). New modifications in the 2023 Duke-ISCVID criteria related to "major microbiological" and "imaging" criteria had the most impact. CONCLUSIONS: The 2023 Duke-ISCVID criteria represent a significant advance in the diagnostic classification of patients with suspected IE.


Assuntos
Doenças Transmissíveis , Endocardite Bacteriana , Endocardite , Humanos , Endocardite Bacteriana/diagnóstico , Endocardite/diagnóstico , Doenças Transmissíveis/diagnóstico , Diagnóstico Diferencial
4.
Clin Infect Dis ; 78(4): 846-854, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157401

RESUMO

INTRODUCTION: Recommended duration of antibiotic treatment of Staphylococcus aureus bacteremia (SAB) is frequently based on distinguishing uncomplicated and complicated SAB, and several risk factors at the onset of infection have been proposed to define complicated SAB. Predictive values of risk factors for complicated SAB have not been validated, and consequences of their use on antibiotic prescriptions are unknown. METHODS: In a prospective cohort, patients with SAB were categorized as complicated or uncomplicated through adjudication (reference definition). Associations and predictive values of 9 risk factors were determined, compared with the reference definition, as was accuracy of Infectious Diseases Society of America (IDSA) criteria that include 4 risk factors, and the projected consequences of applying IDSA criteria on antibiotic use. RESULTS: Among 490 patients, 296 (60%) had complicated SAB. In multivariable analysis, persistent bacteremia (odds ratio [OR], 6.8; 95% confidence interval [CI], 3.9-12.0), community acquisition of SAB (OR, 2.9; 95% CI, 1.9-4.7) and presence of prosthetic material (OR, 2.3; 95% CI, 1.5-3.6) were associated with complicated SAB. Presence of any of the 4 risk factors in the IDSA definition of complicated SAB had a positive predictive value of 70.9% (95% CI, 65.5-75.9) and a negative predictive value of 57.5% (95% CI, 49.1-64.8). Compared with the reference, IDSA criteria yielded 24 (5%) false-negative and 90 (18%) false-positive classifications of complicated SAB. Median duration of antibiotic treatment of these 90 patients was 16 days (interquartile range, 14-19), all with favorable clinical outcome. CONCLUSIONS: Risk factors have low to moderate predictive value to identify complicated SAB and their use may lead to unnecessary prolonged antibiotic use.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Resistência a Meticilina , Staphylococcus aureus , Estudos Prospectivos , Prevalência , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Fatores de Risco , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia
5.
Microbiol Mol Biol Rev ; 87(4): e0006323, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37947420

RESUMO

SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms. While nucleic acid sequencing technologies can chart microbiota composition with high precision, we mostly lack information about the functional roles and interactions of each strain present in a given microbiome. This limits our ability to predict microbiome function in natural habitats and, in the case of dysfunction or dysbiosis, to redirect microbiomes onto stable paths. Here, we will discuss a systematic approach (dubbed the N+1/N-1 concept) to enable step-by-step dissection of microbiome assembly and functioning, as well as intervention procedures to introduce or eliminate one particular microbial strain at a time. The N+1/N-1 concept is informed by natural invasion events and selects culturable, genetically accessible microbes with well-annotated genomes to chart their proliferation or decline within defined synthetic and/or complex natural microbiota. This approach enables harnessing classical microbiological and diversity approaches, as well as omics tools and mathematical modeling to decipher the mechanisms underlying N+1/N-1 microbiota outcomes. Application of this concept further provides stepping stones and benchmarks for microbiome structure and function analyses and more complex microbiome intervention strategies.


Assuntos
Microbiota , Humanos , Microbiota/genética , Disbiose
6.
mSphere ; 8(6): e0051723, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37902330

RESUMO

IMPORTANCE: Microbial populations swiftly adapt to changing environments through horizontal gene transfer. While the mechanisms of gene transfer are well known, the impact of environmental conditions on the selection of transferred gene functions remains less clear. We investigated ICEs, specifically the ICEclc-type, in Pseudomonas aeruginosa clinical isolates. Our findings revealed co-evolution between ICEs and their hosts, with ICE transfers occurring within strains. Gene functions carried by ICEs are positively selected, including potential virulence factors and heavy metal resistance. Comparison to publicly available P. aeruginosa genomes unveiled widespread antibiotic-resistance determinants within ICEclc clades. Thus, the ubiquitous ICEclc family significantly contributes to P. aeruginosa's adaptation and fitness in diverse environments.


Assuntos
Transferência Genética Horizontal , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética
7.
Microbiome ; 11(1): 214, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37770950

RESUMO

BACKGROUND: Plant-beneficial bacterial inoculants are of great interest in agriculture as they have the potential to promote plant growth and health. However, the inoculation of the rhizosphere microbiome often results in a suboptimal or transient colonization, which is due to a variety of factors that influence the fate of the inoculant. To better understand the fate of plant-beneficial inoculants in complex rhizosphere microbiomes, composed by hundreds of genotypes and multifactorial selection mechanisms, controlled studies with high-complexity soil microbiomes are needed. RESULTS: We analysed early compositional changes in a taxa-rich natural soil bacterial community under both exponential nutrient-rich and stationary nutrient-limited growth conditions (i.e. growing and stable communities, respectively) following inoculation with the plant-beneficial bacterium Pseudomonas protegens in a bulk soil or a wheat rhizosphere environment. P. protegens successfully established under all conditions tested and was more abundant in the rhizosphere of the stable community. Nutrient availability was a major factor driving microbiome composition and structure as well as the underlying assembly processes. While access to nutrients resulted in communities assembled mainly by homogeneous selection, stochastic processes dominated under the nutrient-deprived conditions. We also observed an increased rhizosphere selection effect under nutrient-limited conditions, resulting in a higher number of amplicon sequence variants (ASVs) whose relative abundance was enriched. The inoculation with P. protegens produced discrete changes, some of which involved other Pseudomonas. Direct competition between Pseudomonas strains partially failed to replicate the observed differences in the microbiome and pointed to a more complex interaction network. CONCLUSIONS: The results of this study show that nutrient availability is a major driving force of microbiome composition, structure and diversity in both the bulk soil and the wheat rhizosphere and determines the assembly processes that govern early microbiome development. The successful establishment of the inoculant was facilitated by the wheat rhizosphere and produced discrete changes among other members of the microbiome. Direct competition between Pseudomonas strains only partially explained the microbiome changes, indicating that indirect interactions or spatial distribution in the rhizosphere or soil interface may be crucial for the survival of certain bacteria. Video Abstract.


Assuntos
Solo , Triticum , Solo/química , Triticum/microbiologia , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética , Plantas , Pseudomonas/genética
8.
PLoS Comput Biol ; 19(8): e1011402, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603551

RESUMO

When bacterial species with the same resource preferences share the same growth environment, it is commonly believed that direct competition will arise. A large variety of competition and more general 'interaction' models have been formulated, but what is currently lacking are models that link monoculture growth kinetics and community growth under inclusion of emerging biological interactions, such as metabolite cross-feeding. In order to understand and mathematically describe the nature of potential cross-feeding interactions, we design experiments where two bacterial species Pseudomonas putida and Pseudomonas veronii grow in liquid medium either in mono- or as co-culture in a resource-limited environment. We measure population growth under single substrate competition or with double species-specific substrates (substrate 'indifference'), and starting from varying cell ratios of either species. Using experimental data as input, we first consider a mean-field model of resource-based competition, which captures well the empirically observed growth rates for monocultures, but fails to correctly predict growth rates in co-culture mixtures, in particular for skewed starting species ratios. Based on this, we extend the model by cross-feeding interactions where the consumption of substrate by one consumer produces metabolites that in turn are resources for the other consumer, thus leading to positive feedback in the species system. Two different cross-feeding options were considered, which either lead to constant metabolite cross-feeding, or to a regulated form, where metabolite utilization is activated with rates according to either a threshold or a Hill function, dependent on metabolite concentration. Both mathematical proof and experimental data indicate regulated cross-feeding to be the preferred model to constant metabolite utilization, with best co-culture growth predictions in case of high Hill coefficients, close to binary (on/off) activation states. This suggests that species use the appearing metabolite concentrations only when they are becoming high enough; possibly as a consequence of their lower energetic content than the primary substrate. Metabolite sharing was particularly relevant at unbalanced starting cell ratios, causing the minority partner to proliferate more than expected from the competitive substrate because of metabolite release from the majority partner. This effect thus likely quells immediate substrate competition and may be important in natural communities with typical very skewed relative taxa abundances and slower-growing taxa. In conclusion, the regulated bacterial interaction network correctly describes species substrate growth reactions in mixtures with few kinetic parameters that can be obtained from monoculture growth experiments.


Assuntos
Grupos Minoritários , Física , Especificidade da Espécie , Técnicas de Cocultura , Cinética
9.
Clin Infect Dis ; 77(4): 518-526, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37138445

RESUMO

The microbiology, epidemiology, diagnostics, and treatment of infective endocarditis (IE) have changed significantly since the Duke Criteria were published in 1994 and modified in 2000. The International Society for Cardiovascular Infectious Diseases (ISCVID) convened a multidisciplinary Working Group to update the diagnostic criteria for IE. The resulting 2023 Duke-ISCVID IE Criteria propose significant changes, including new microbiology diagnostics (enzyme immunoassay for Bartonella species, polymerase chain reaction, amplicon/metagenomic sequencing, in situ hybridization), imaging (positron emission computed tomography with 18F-fluorodeoxyglucose, cardiac computed tomography), and inclusion of intraoperative inspection as a new Major Clinical Criterion. The list of "typical" microorganisms causing IE was expanded and includes pathogens to be considered as typical only in the presence of intracardiac prostheses. The requirements for timing and separate venipunctures for blood cultures were removed. Last, additional predisposing conditions (transcatheter valve implants, endovascular cardiac implantable electronic devices, prior IE) were clarified. These diagnostic criteria should be updated periodically by making the Duke-ISCVID Criteria available online as a "Living Document."


Assuntos
Doenças Transmissíveis , Endocardite Bacteriana , Endocardite , Próteses Valvulares Cardíacas , Humanos , Endocardite Bacteriana/microbiologia , Endocardite/etiologia , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Doenças Transmissíveis/complicações
10.
Thromb Haemost ; 123(9): 856-866, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37094794

RESUMO

OBJECTIVE: Danaparoid sodium is a biopolymeric complex drug composed of the most abundant heparan sulfate (HS) followed in descending order by dermatan sulfate (DS) and chondroitin sulfate (CS). This composite nature explains its peculiar antithrombotic and anticoagulant properties and make it particularly advantageous when the risk of heparin-induced thrombocytopenia occurs. A specific control of the danaparoid composition is required by the Ph. Eur. The monograph includes the CS and DS limit contents and describes the method for their quantification through selective enzymatic degradations. MATERIALS AND METHODS: In this study, a quantitative two-dimensional nuclear magnetic resonance (NMR) method is proposed as a new method suitable for CS and DS quantification. Statistical comparison of the results provided by the analysis of a series of danaparoid samples with both NMR and enzymatic methods highlights a small systematic difference, likely derived from lyase-resistant sequences bearing oxidized terminals. Some modified structures, whose survival to the enzymatic action was confirmed by mass spectrometry, can be detected and quantified by NMR. CONCLUSION AND RESULTS: The proposed NMR method can serve for the determination of DS and CS contents, is an easy-to-apply method with no dependence from enzymes and standards, and provides extensive structural information on the overall glycosaminoglycans mixture.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Humanos , Dermatan Sulfato/análise , Dermatan Sulfato/química , Sulfatos de Condroitina/química , Isótopos de Carbono , Heparitina Sulfato , Espectroscopia de Ressonância Magnética
11.
Clin Infect Dis ; 77(1): 9-15, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869816

RESUMO

BACKGROUND: Several studies have suggested that in patients with Staphylococcus aureus bacteremia (SAB) [18F] fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG-PET/CT) improves outcome. However, these studies often ignored possible immortal time bias. METHODS: Prospective multicenter cohort study in 2 university and 5 non-university hospitals, including all patients with SAB. [18F]FDG-PET/CT was performed on clinical indication as part of usual care. Primary outcome was 90-day all-cause mortality. Effect of [18F]FDG-PET/CT was modeled with a Cox proportional hazards model using [18F]FDG-PET/CT as a time-varying variable and corrected for confounders for mortality (age, Charlson score, positive follow-up cultures, septic shock, and endocarditis). Secondary outcome was 90-day infection-related mortality (assessed by adjudication committee) using the same analysis. In a subgroup-analysis, we determined the effect of [18F]FDG-PET/CT in patients with high risk of metastatic infection. RESULTS: Of 476 patients, 178 (37%) underwent [18F]FDG-PET/CT. Day-90 all-cause mortality was 31% (147 patients), and infection-related mortality was 17% (83 patients). The confounder adjusted hazard ratio (aHR) for all-cause mortality was 0.50 (95% confidence interval [CI]: .34-.74) in patients that underwent [18F]FDG-PET/CT. Adjustment for immortal time bias changed the aHR to 1.00 (95% CI .68-1.48). Likewise, after correction for immortal time bias, [18F]FDG-PET/CT had no effect on infection-related mortality (cause specific aHR 1.30 [95% CI .77-2.21]), on all-cause mortality in patients with high-risk SAB (aHR 1.07 (95% CI .63-1.83) or on infection-related mortality in high-risk SAB (aHR for 1.24 [95% CI .67-2.28]). CONCLUSIONS: After adjustment for immortal time bias [18F]FDG-PET/CT was not associated with day-90 all-cause or infection-related mortality in patients with SAB.


Assuntos
Bacteriemia , Infecções Estafilocócicas , Humanos , Fluordesoxiglucose F18 , Staphylococcus aureus , Estudos Prospectivos , Estudos de Coortes , Infecções Estafilocócicas/diagnóstico por imagem
12.
mSphere ; 8(2): e0065822, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939355

RESUMO

Bacterial growth can be studied at the single cell level through time-lapse microscopy imaging. Technical advances in microscopy lead to increasing image quality, which in turn allows to visualize larger areas of growth, containing more and more cells. In this context, the use of automated computational tools becomes essential. In this paper, we present STrack, a tool that allows to track cells in time-lapse images in a fast and efficient way. We compared it to 3 recently published tracking tools on images ranging over 6 different bacterial strains with various morphologies. STrack showed to be the most consistent tracking tool, returning more than 80% of correct cell lineages on average, in comparison to manually annotated ground-truth. The python implementation of STrack, a docker structure, and a tutorial on how to download and use the tool can be found on the following github page: https://github.com/Helena-todd/STrack. IMPORTANCE Automated image analysis of growing prokaryotic cell populations becomes indispensable with larger data sets, such as derived by time-lapse microscopy. The tracking of the same individual cells and their daughter lineages is cumbersome and prone to errors in image alignment or poor resolution. Here, we present a simplified but highly effective tool for non-specialists to engage in cell tracking. The tool can be downloaded and run as a contained script-structure requiring minimal user input. Run times are fast, in comparison to other equivalent tools, and outputs consist of cell tables that can be subsequently used for lineage analysis, for which we offer examples. By providing open code, training data sets, as well as simplified script execution, we aimed to facilitate wide usage and further tool development for image analysis.


Assuntos
Microscopia , Software , Microscopia/métodos , Imagem com Lapso de Tempo/métodos , Processamento de Imagem Assistida por Computador/métodos , Rastreamento de Células/métodos
13.
mSystems ; 8(2): e0117422, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36786610

RESUMO

Strain inoculation (bioaugmentation) is a potentially useful technology to provide microbiomes with new functionalities. However, there is limited understanding of the genetic factors contributing to successful establishment of inoculants. This work aimed to characterize the genes implicated in proliferation of the monoaromatic compound-degrading Pseudomonas veronii 1YdBTEX2 in nonsterile polluted soils. We generated two independent mutant libraries by random minitransposon-delivered marker insertion followed by deep sequencing (Tn-seq) with a total of 5.0 × 105 unique insertions. Libraries were grown in multiple successive cycles for up to 50 generations either in batch liquid medium or in two types of soil microcosms with different resident microbial content (sand or silt) in the presence of toluene. Analysis of gene insertion abundances at different time points (passed generations of metapopulation growth), in comparison to proportions at start and to in silico generated randomized insertion distributions, allowed to define ~800 essential genes common to both libraries and ~2,700 genes with conditional fitness effects in either liquid or soil (195 of which resulted in fitness gain). Conditional fitness genes largely overlapped among all growth conditions but affected approximately twice as many functions in liquid than in soil. This indicates soil to be a more promiscuous environment for mutant growth, probably because of additional nutrient availability. Commonly depleted genes covered a wide range of biological functions and metabolic pathways, such as inorganic ion transport, fatty acid metabolism, amino acid biosynthesis, or nucleotide and cofactor metabolism. Only sparse gene sets were uncovered whose insertion caused fitness decrease exclusive for soils, which were different between silt and sand. Despite detectable higher resident bacteria and potential protist predatory counts in silt, we were, therefore, unable to detect any immediately obvious candidate genes affecting P. veronii biological competitiveness. In contrast to liquid growth conditions, mutants inactivating flagella biosynthesis and motility consistently gained strong fitness advantage in soils and displayed higher growth rates than wild type. In conclusion, although many gene functions were found to be important for growth in soils, most of these are not specific as they affect growth in liquid minimal medium more in general. This indicates that P. veronii does not need major metabolic reprogramming for proliferation in soil with accessible carbon and generally favorable growth conditions. IMPORTANCE Restoring damaged microbiomes is still a formidable challenge. Classical widely adopted approaches consist of augmenting communities with pure or mixed cultures in the hope that these display their intended selected properties under in situ conditions. Ecological theory, however, dictates that introduction of a nonresident microbe is unlikely to lead to its successful proliferation in a foreign system such as a soil microbiome. In an effort to study this systematically, we used random transposon insertion scanning to identify genes and possibly, metabolic subsystems, that are crucial for growth and survival of a bacterial inoculant (Pseudomonas veronii) for targeted degradation of monoaromatic compounds in contaminated nonsterile soils. Our results indicate that although many gene functions are important for proliferation in soil, they are general factors for growth and not exclusive for soil. In other words, P. veronii is a generalist that is not a priori hindered by the soil for its proliferation and would make a good bioaugmentation candidate.


Assuntos
Areia , Solo , Pseudomonas/genética , Bactérias/genética
14.
Nucleic Acids Res ; 51(5): 2345-2362, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36727472

RESUMO

Conjugation of DNA relies on multicomponent protein complexes bridging two bacterial cytoplasmic compartments. Whereas plasmid conjugation systems have been well documented, those of integrative and conjugative elements (ICEs) have remained poorly studied. We characterize here the conjugation system of the ICEclc element in Pseudomonas putida UWC1 that is a model for a widely distributed family of ICEs. By in frame deletion and complementation, we show the importance on ICE transfer of 22 genes in a 20-kb conserved ICE region. Protein comparisons recognized seven homologs to plasmid type IV secretion system components, another six homologs to frequent accessory proteins, and the rest without detectable counterparts. Stationary phase imaging of P. putida ICEclc with in-frame fluorescent protein fusions to predicted type IV components showed transfer-competent cell subpopulations with multiple fluorescent foci, largely overlapping in dual-labeled subcomponents, which is suggestive for multiple conjugation complexes per cell. Cross-dependencies between subcomponents in ICE-type IV secretion system assembly were revealed by quantitative foci image analysis in a variety of ICEclc mutant backgrounds. In conclusion, the ICEclc family presents an evolutionary distinct type IV conjugative system with transfer competent cells specialized in efficient transfer.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Sistemas de Secreção Tipo IV/genética , Proteínas de Bactérias/genética , Plasmídeos/genética , Conjugação Genética/genética , Transferência Genética Horizontal
15.
Infection ; 51(3): 705-713, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36355270

RESUMO

PURPOSE: Immunological phenomena are a minor criteria in the modified Duke Criteria for endocarditis. Given the changes in epidemiology and diagnostics, the added value of determining these phenomena in today's patients with suspected endocarditis is unknown. METHODS: In a retrospective cohort study of all patients with suspected endocarditis admitted to our hospital and discussed in our endocarditis team, we determined the proportion of patients classified as definite endocarditis because of either positive IgM rheumatoid factor (IgM RF), haematuria, or Roth's spots on ophthalmology consultation. We also determined diagnostic accuracy of each of these immunological phenomena separately and combined. RESULTS: Of 285 patients included, 138 (48%) had definite endocarditis and at least one immunological test was performed in 222 patients (78%). Elevated IgM RF was found in 22 of 126 patients tested (17%), haematuria in 78 of 196 tested (40%) and Roth's spots in six of 120 tested (5%). Eighteen of 138 patients with definite IE (13%) were classified as such because of a positive IgM RF, haematuria or Roth's spots. Haematuria had the highest sensitivity: 50.5% (95% CI 40.4-60.6) and Roth's spots the highest specificity: 98.3% (95% CI 90.8-99.9). The diagnostic accuracy results were robust in a sensitivity analysis aimed at avoiding incorporation bias. CONCLUSION: Among patients with a clinical suspicion of endocarditis, recommended systematic testing for immunological phenomena helped classify more patients as definite IE and is useful to confirm the diagnosis of endocarditis.


Assuntos
Endocardite Bacteriana , Endocardite , Humanos , Estudos Retrospectivos , Hematúria , Hospitalização , Imunoglobulina M , Endocardite Bacteriana/diagnóstico
16.
Viruses ; 14(9)2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36146874

RESUMO

Allo-HSCT with CCR5Δ32/Δ32 donor cells is the only curative HIV-1 intervention. We investigated the impact of allo-HSCT on the viral reservoir in PBMCs and post-mortem tissue in two patients. IciS-05 and IciS-11 both received a CCR5Δ32/Δ32 allo-HSCT. Before allo-HSCT, ultrasensitive HIV-1 RNA quantification; HIV-1-DNA quantification; co-receptor tropism analysis; deep-sequencing and viral characterization in PBMCs and bone marrow; and post-allo-HSCT, ultrasensitive RNA and HIV-1-DNA quantification were performed. Proviral quantification, deep sequencing, and viral characterization were done in post-mortem tissue samples. Both patients harbored subtype B CCR5-tropic HIV-1 as determined genotypically and functionally by virus culture. Pre-allo-HSCT, HIV-1-DNA could be detected in both patients in bone marrow, PBMCs, and T-cell subsets. Chimerism correlated with detectable HIV-1-DNA LTR copies in cells and tissues. Post-mortem analysis of IciS-05 revealed proviral DNA in all tissue biopsies, but not in PBMCs. In patient IciS-11, who was transplanted twice, no HIV-1-DNA could be detected in PBMCs at the time of death, whereas HIV-1-DNA was detectable in the lymph node. In conclusion, shortly after CCR5Δ32/Δ32, allo-HSCT HIV-1-DNA became undetectable in PBMCs. However, HIV-1-DNA variants identical to those present before transplantation persisted in post-mortem-obtained tissues, indicating that these tissues play an important role as viral reservoirs.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Transplante de Células-Tronco Hematopoéticas , Autopsia , HIV-1/genética , Humanos , RNA
17.
Int J Cardiol ; 367: 49-54, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36002040

RESUMO

BACKGROUND: Current guidelines on the management of infective endocarditis (IE) recommend follow-up blood cultures (FUBCs) to identify persistent bacteraemia, as this has prognostic value and guides treatment decisions. While persistent bacteraemia frequently occurs in Staphylococcus aureus bacteraemia and IE, its prevalence and impact in non-staphylococcal IE is largely unknown. We determined prevalence and prognostic value of persistent bacteraemia in non-staphylococcal IE. METHODS: We conducted a retrospective analysis of all patients diagnosed with definite non-staphylococcal endocarditis according to the modified Duke Criteria in two university hospital endocarditis registries We determined the prevalence and prognostic value of persistent bacteraemia. RESULTS: Of the included 159 patients 70 (44%) had prosthetic valve endocarditis (PVE). A median number of two [IQR 1-3] FUBCs were taken during the first week, with 134/159 (84%) having at least one FUBC in the first four days. Seven patients (4,4%) had persistent bacteraemia 48 h after start of antibiotic treatment: 5/70 patients (7.1%) with PVE and 2/89 (2.2%) with native valve endocarditis. Among 97 patients with streptococcal IE, nine patients with HACEK IE and six patients with Cutibacterium IE, no persistent bacteraemia was observed. Enterococcus faecalis was the causative microorganism in five patients with persistent bacteraemia, the other two had non-HACEK Gram-negative endocarditis. CONCLUSION: Persistent bacteraemia in non-staphylococcal endocarditis was rare. It was more frequently observed in PVE and was restricted to more resilient microorganisms such as enterococci and non-HACEK Gram-negative bacteria. Routine collection of FUBCs in patients with streptococcal endocarditis has a low yield and may require re-evaluation.


Assuntos
Bacteriemia , Endocardite Bacteriana , Endocardite , Próteses Valvulares Cardíacas , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Endocardite/diagnóstico , Endocardite/epidemiologia , Endocardite/microbiologia , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/epidemiologia , Endocardite Bacteriana/etiologia , Próteses Valvulares Cardíacas/efeitos adversos , Humanos , Prevalência , Estudos Retrospectivos , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus
18.
PLoS Genet ; 18(6): e1010286, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35763548

RESUMO

The mechanisms and impact of horizontal gene transfer processes to distribute gene functions with potential adaptive benefit among prokaryotes have been well documented. In contrast, little is known about the life-style of mobile elements mediating horizontal gene transfer, whereas this is the ultimate determinant for their transfer fitness. Here, we investigate the life-style of an integrative and conjugative element (ICE) within the genus Pseudomonas that is a model for a widespread family transmitting genes for xenobiotic compound metabolism and antibiotic resistances. Previous work showed bimodal ICE activation, but by using single cell time-lapse microscopy coupled to combinations of chromosomally integrated single copy ICE promoter-driven fluorescence reporters, RNA sequencing and mutant analysis, we now describe the complete regulon leading to the arisal of differentiated dedicated transfer competent cells. The regulon encompasses at least three regulatory nodes and five (possibly six) further conserved gene clusters on the ICE that all become expressed under stationary phase conditions. Time-lapse microscopy indicated expression of two regulatory nodes (i.e., bisR and alpA-bisDC) to precede that of the other clusters. Notably, expression of all clusters except of bisR was confined to the same cell subpopulation, and was dependent on the same key ICE regulatory factors. The ICE thus only transfers from a small fraction of cells in a population, with an estimated proportion of between 1.7-4%, which express various components of a dedicated transfer competence program imposed by the ICE, and form the centerpiece of ICE conjugation. The components mediating transfer competence are widely conserved, underscoring their selected fitness for efficient transfer of this class of mobile elements.


Assuntos
Conjugação Genética , Transferência Genética Horizontal , Conjugação Genética/genética , Transferência Genética Horizontal/genética , Células Procarióticas , Regiões Promotoras Genéticas , Pseudomonas/genética
19.
mSystems ; 7(2): e0016022, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35353008

RESUMO

Microbiomes are typically characterized by high species diversity but it is poorly understood how such system-level complexity can be generated and propagated. Here, we used soil microcosms as a model to study development of bacterial communities as a function of their starting complexity and environmental boundary conditions. Despite inherent stochastic variation in manipulating species-rich communities, both laboratory-mixed medium complexity (21 soil bacterial isolates in equal proportions) and high-diversity natural top-soil communities followed highly reproducible succession paths, maintaining 16S rRNA gene amplicon signatures prominent for known soil communities in general. Development trajectories and compositional states were different for communities propagated in soil microcosms than in liquid suspension. Compositional states were maintained over multiple renewed growth cycles but could be diverged by short-term pollutant exposure. The different but robust trajectories demonstrated that deterministic taxa-inherent characteristics underlie reproducible development and self-organized complexity of soil microbiomes within their environmental boundary conditions. Our findings also have direct implications for potential strategies to achieve controlled restoration of desertified land. IMPORTANCE There is now a great awareness of the high diversity of most environmental ("free-living") and host-associated microbiomes, but exactly how diverse microbial communities form and maintain is still highly debated. A variety of theories have been put forward, but testing them has been problematic because most studies have been based on synthetic communities that fail to accurately mimic the natural composition (i.e., the species used are typically not found together in the same environment), the diversity (usually too low to be representative), or the environmental system itself (using designs with single carbon sources or solely mixed liquid cultures). In this study, we show how species-diverse soil bacterial communities can reproducibly be generated, propagated, and maintained, either from individual isolates (21 soil bacterial strains) or from natural microbial mixtures washed from top-soil. The high replicate consistency we achieve both in terms of species compositions and developmental trajectories demonstrates the strong inherent deterministic factors driving community formation from their species composition. Generating complex soil microbiomes may provide ways for restoration of damaged soils that are prevalent on our planet.


Assuntos
Microbiota , Solo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Bactérias
20.
Curr Opin Biotechnol ; 75: 102688, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35123235

RESUMO

Dynamic analysis of microbial composition is crucial for understanding community functioning and detecting dysbiosis. Compositional information is mostly obtained through sequencing of taxonomic markers or whole meta-genomes, which may be productively complemented by real-time quantitative community multiparametric flow cytometry data (FCM). Patterns and clusters in FCM community data can be distinguished and compared by unsupervised machine learning. Alternatively, FCM data from preselected individual strain phenotypes can be used for supervised machine-training in order to differentiate similar cell types within communities. Both types of machine learning can quantitatively deconvolute community FCM data sets and rapidly analyse global changes in response to treatment. Procedures may further be optimized for recurrent microbiome samples to simultaneously quantify physiological and compositional states.


Assuntos
Microbiota , Citometria de Fluxo/métodos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...