Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6682): 512-519, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301007

RESUMO

The generation of cyclic oligoadenylates and subsequent allosteric activation of proteins that carry sensory domains is a distinctive feature of type III CRISPR-Cas systems. In this work, we characterize a set of associated genes of a type III-B system from Haliangium ochraceum that contains two caspase-like proteases, SAVED-CHAT and PCaspase (prokaryotic caspase), co-opted from a cyclic oligonucleotide-based antiphage signaling system (CBASS). Cyclic tri-adenosine monophosphate (AMP)-induced oligomerization of SAVED-CHAT activates proteolytic activity of the CHAT domains, which specifically cleave and activate PCaspase. Subsequently, activated PCaspase cleaves a multitude of proteins, which results in a strong interference phenotype in vivo in Escherichia coli. Taken together, our findings reveal how a CRISPR-Cas-based detection of a target RNA triggers a cascade of caspase-associated proteolytic activities.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Caspases , Myxococcales , Proteólise , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caspases/química , Caspases/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA/metabolismo , Myxococcales/enzimologia , Myxococcales/genética , Domínios Proteicos
2.
Commun Biol ; 6(1): 1042, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833505

RESUMO

Anti-CRISPR proteins (Acrs) block the activity of CRISPR-associated (Cas) proteins, either by inhibiting DNA interference or by preventing crRNA loading and complex formation. Although the main use of Acrs in genome engineering applications is to lower the cleavage activity of Cas proteins, they can also be instrumental for various other CRISPR-based applications. Here, we explore the genome editing potential of the thermoactive type II-C Cas9 variants from Geobacillus thermodenitrificans T12 (ThermoCas9) and Geobacillus stearothermophilus (GeoCas9) in Escherichia coli. We then demonstrate that the AcrIIC1 protein from Neisseria meningitidis robustly inhibits their DNA cleavage activity, but not their DNA binding capacity. Finally, we exploit these AcrIIC1:Cas9 complexes for gene silencing and base-editing, developing Acr base-editing tools. With these tools we pave the way for future engineering applications in mesophilic and thermophilic bacteria combining the activities of Acr and CRISPR-Cas proteins.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Edição de Genes , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , DNA/genética
3.
Nat Struct Mol Biol ; 30(8): 1172-1182, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37460897

RESUMO

RNA-guided type V CRISPR-Cas12 effectors provide adaptive immunity against mobile genetic elements (MGEs) in bacteria and archaea. Among diverse Cas12 enzymes, the recently identified Cas12m2 (CRISPR-Cas type V-M) is highly compact and has a unique RuvC active site. Although the non-canonical RuvC triad does not permit dsDNA cleavage, Cas12m2 still protects against invading MGEs through transcriptional silencing by strong DNA binding. However, the molecular mechanism of RNA-guided genome inactivation by Cas12m2 remains unknown. Here we report cryo-electron microscopy structures of two states of Cas12m2-CRISPR RNA (crRNA)-target DNA ternary complexes and the Cas12m2-crRNA binary complex, revealing structural dynamics during crRNA-target DNA heteroduplex formation. The structures indicate that the non-target DNA strand is tightly bound to a unique arginine-rich cluster in the recognition (REC) domains and the non-canonical active site in the RuvC domain, ensuring strong DNA-binding affinity of Cas12m2. Furthermore, a structural comparison of Cas12m2 with TnpB, a putative ancestor of Cas12 enzymes, suggests that the interaction of the characteristic coiled-coil REC2 insertion with the protospacer-adjacent motif-distal region of the heteroduplex is crucial for Cas12m2 to engage in adaptive immunity. Collectively, our findings improve mechanistic understanding of diverse type V CRISPR-Cas effectors and provide insights into the evolution of TnpB to Cas12 enzymes.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Microscopia Crioeletrônica , Bactérias/metabolismo , RNA/metabolismo , DNA/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo
4.
Sci Rep ; 13(1): 10153, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349508

RESUMO

Clostridium species are re-emerging as biotechnological workhorses for industrial acetone-butanol-ethanol production. This re-emergence is largely due to advances in fermentation technologies but also due to advances in genome engineering and re-programming of the native metabolism. Several genome engineering techniques have been developed including the development of numerous CRISPR-Cas tools. Here, we expanded the CRISPR-Cas toolbox and developed a CRISPR-Cas12a genome engineering tool in Clostridium beijerinckii NCIMB 8052. By controlling the expression of FnCas12a with the xylose-inducible promoter, we achieved efficient (25-100%) single-gene knockout of five C. beijerinckii NCIMB 8052 genes (spo0A, upp, Cbei_1291, Cbei_3238, Cbei_3832). Moreover, we achieved multiplex genome engineering by simultaneously knocking out the spo0A and upp genes in a single step with an efficiency of 18%. Finally, we showed that the spacer sequence and position in the CRISPR array can affect the editing efficiency outcome.


Assuntos
Clostridium beijerinckii , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Butanóis/metabolismo , 1-Butanol/metabolismo , Edição de Genes/métodos
5.
CRISPR J ; 6(3): 278-288, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37134217

RESUMO

Most genetic engineering applications reported thus far rely on the type II-A CRISPR-Cas9 nuclease from Streptococcus pyogenes (SpyCas9), limiting the genome-targeting scope. In this study, we demonstrate that a small, naturally accurate, and thermostable type II-C Cas9 ortholog from Geobacillus thermodenitrificans (ThermoCas9) with alternative target site preference is active in human cells, and it can be used as an efficient genome editing tool, especially for gene disruption. In addition, we develop a ThermoCas9-mediated base editor, called ThermoBE4, for programmable nicking and subsequent C-to-T conversions in human genomes. ThermoBE4 exhibits a three times larger window of activity compared with the corresponding SpyCas9 base editor (BE4), which may be an advantage for gene mutagenesis applications. Hence, ThermoCas9 provides an alternative platform that expands the targeting scope of both genome and base editing in human cells.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Geobacillus , Edição de Genes/métodos , Humanos , Genoma , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/metabolismo , Geobacillus/metabolismo , Engenharia Genética/métodos , Escherichia coli , Células HEK293
6.
Nature ; 616(7956): 390-397, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020030

RESUMO

The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Elementos de DNA Transponíveis , Deinococcus , Endodesoxirribonucleases , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , RNA Guia de Sistemas CRISPR-Cas/química , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/ultraestrutura , Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/ultraestrutura , Deinococcus/enzimologia , Deinococcus/genética , Especificidade por Substrato
7.
Trends Biotechnol ; 41(3): 396-409, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709094

RESUMO

A series of spectacular scientific discoveries and technological advances in the second half of the 20th century have provided the basis for the ongoing genome editing revolution. The elucidation of structural and functional features of DNA and RNA was followed by pioneering studies on genome editing: Molecular biotechnology was born. Since then, four decades followed during which progress of scientific insights and technological methods continued at an overwhelming pace. Fundamental insights into microbial host-virus interactions led to the development of tools for genome editing using restriction enzymes or the revolutionary CRISPR-Cas technology. In this review, we provide a historical overview of milestones that led to the genome editing revolution and speculate about future trends in biotechnology.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Biotecnologia/métodos , DNA/genética
8.
Nucleic Acids Res ; 51(5): 2363-2376, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36718935

RESUMO

It has been known for decades that codon usage contributes to translation efficiency and hence to protein production levels. However, its role in protein synthesis is still only partly understood. This lack of understanding hampers the design of synthetic genes for efficient protein production. In this study, we generated a synonymous codon-randomized library of the complete coding sequence of red fluorescent protein. Protein production levels and the full coding sequences were determined for 1459 gene variants in Escherichia coli. Using different machine learning approaches, these data were used to reveal correlations between codon usage and protein production. Interestingly, protein production levels can be relatively accurately predicted (Pearson correlation of 0.762) by a Random Forest model that only relies on the sequence information of the first eight codons. In this region, close to the translation initiation site, mRNA secondary structure rather than Codon Adaptation Index (CAI) is the key determinant of protein production. This study clearly demonstrates the key role of codons at the start of the coding sequence. Furthermore, these results imply that commonly used CAI-based codon optimization of the full coding sequence is not a very effective strategy. One should rather focus on optimizing protein production via reducing mRNA secondary structure formation with the first few codons.


Assuntos
Escherichia coli , Aprendizado de Máquina , Distribuição Aleatória , Códon/genética , Códon/metabolismo , RNA Mensageiro/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas
9.
Mol Cell ; 82(23): 4405-4406, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459983

RESUMO

In this issue, Liu et al. present an in-depth study aiming to unravel the structural, biochemical, and physiological aspects of how type III-E CRISPR-Cas systems trigger abortive infection by activating a protease upon target RNA recognition.1.


Assuntos
Sistemas CRISPR-Cas , Endopeptidases , Peptídeo Hidrolases , RNA , Biologia
10.
Mol Cell ; 82(23): 4487-4502.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427491

RESUMO

CRISPR-Cas are prokaryotic adaptive immune systems. Cas nucleases generally use CRISPR-derived RNA guides to specifically bind and cleave DNA or RNA targets. Here, we describe the experimental characterization of a bacterial CRISPR effector protein Cas12m representing subtype V-M. Despite being less than half the size of Cas12a, Cas12m catalyzes auto-processing of a crRNA guide, recognizes a 5'-TTN' protospacer-adjacent motif (PAM), and stably binds a guide-complementary double-stranded DNA (dsDNA). Cas12m has a RuvC domain with a non-canonical catalytic site and accordingly is incapable of guide-dependent cleavage of target nucleic acids. Despite lacking target cleavage activity, the high binding affinity of Cas12m to dsDNA targets allows for interference as demonstrated by its ability to protect bacteria against invading plasmids through silencing invader transcription and/or replication. Based on these molecular features, we repurposed Cas12m by fusing it to a cytidine deaminase that resulted in base editing within a distinct window.


Assuntos
Proteínas Associadas a CRISPR , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/genética , Plasmídeos , RNA , RNA Guia de Cinetoplastídeos/metabolismo
11.
Microb Cell Fact ; 21(1): 243, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419165

RESUMO

BACKGROUND: Ethyl acetate is a bulk chemical traditionally produced via energy intensive chemical esterification. Microbial production of this compound offers promise as a more sustainable alternative process. So far, efforts have focused on using sugar-based feedstocks for microbial ester production, but extension to one-carbon substrates, such as CO and CO2/H2, is desirable. Acetogens present a promising microbial platform for the production of ethyl esters from these one-carbon substrates. RESULTS: We engineered the acetogen C. autoethanogenum to produce ethyl acetate from CO by heterologous expression of an alcohol acetyltransferase (AAT), which catalyzes the formation of ethyl acetate from acetyl-CoA and ethanol. Two AATs, Eat1 from Kluyveromyces marxianus and Atf1 from Saccharomyces cerevisiae, were expressed in C. autoethanogenum. Strains expressing Atf1 produced up to 0.2 mM ethyl acetate. Ethyl acetate production was barely detectable (< 0.01 mM) for strains expressing Eat1. Supplementation of ethanol was investigated as potential boost for ethyl acetate production but resulted only in a 1.5-fold increase (0.3 mM ethyl acetate). Besides ethyl acetate, C. autoethanogenum expressing Atf1 could produce 4.5 mM of butyl acetate when 20 mM butanol was supplemented to the growth medium. CONCLUSIONS: This work offers for the first time a proof-of-principle that autotrophic short chain ester production from C1-carbon feedstocks is possible and offers leads on how this approach can be optimized in the future.


Assuntos
Etanol , Engenharia Metabólica , Saccharomyces cerevisiae/genética , Ésteres , Carbono
12.
Curr Opin Biotechnol ; 78: 102789, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115160

RESUMO

Since the discovery of RNA-programmable nucleases from the prokaryotic adaptive immune system CRISPR-Cas, these proteins have seen rapid and widespread adoption for biotechnological and clinical research. A recently discovered system, CRISPR-Cas13, uses CRISPR RNA guides to target RNA. Interestingly, RNA targeting by Cas13 results in cleavage of both target RNA and bystander RNA. This feature has been used to develop innovative diagnostic tools for the detection of specific RNAs. Unlike in vitro detection of RNA using collateral RNA cleavage, however, initial studies of mammalian cells only revealed highly specific target RNA-knockdown activity. Although these findings have been confirmed subsequently, several recent publications do report Cas13-mediated toxicity and collateral RNA cleavage when using Cas13 in eukaryotes. Here, we review these conflicting observations and discuss its potential molecular basis.


Assuntos
Sistemas CRISPR-Cas , RNA , Animais , Sistemas CRISPR-Cas/genética , RNA/genética , Edição de Genes/métodos , Mamíferos/genética
13.
Nucleic Acids Res ; 50(14): 8377-8391, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822842

RESUMO

The RNA programmed non-specific (trans) nuclease activity of CRISPR-Cas Type V and VI systems has opened a new era in the field of nucleic acid-based detection. Here, we report on the enhancement of trans-cleavage activity of Cas12a enzymes using hairpin DNA sequences as FRET-based reporters. We discover faster rate of trans-cleavage activity of Cas12a due to its improved affinity (Km) for hairpin DNA structures, and provide mechanistic insights of our findings through Molecular Dynamics simulations. Using hairpin DNA probes we significantly enhance FRET-based signal transduction compared to the widely used linear single stranded DNA reporters. Our signal transduction enables faster detection of clinically relevant double stranded DNA targets with improved sensitivity and specificity either in the presence or in the absence of an upstream pre-amplification step.


Assuntos
Proteínas Associadas a CRISPR , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , DNA/genética , Clivagem do DNA , DNA de Cadeia Simples/genética
14.
CRISPR J ; 5(4): 571-585, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35856642

RESUMO

Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications, CRISPR-Cas may benefit from strict control over Cas enzyme activity. Previously, anti-CRISPR proteins and designed oligonucleotides have been proposed to modulate CRISPR-Cas activity. In this study, we report on the potential of guide-complementary DNA oligonucleotides as controlled inhibitors of Cas9 ribonucleoprotein complexes. First, we show that DNA oligonucleotides inhibit Cas9 activity in human cells, reducing both on- and off-target cleavage. We then used in vitro assays to better understand how inhibition is achieved and under which conditions. Two factors were found to be important for robust inhibition: the length of the complementary region and the presence of a protospacer adjacent motif-loop on the inhibitor. We conclude that DNA oligonucleotides can be used to effectively inhibit Cas9 activity both ex vivo and in vitro.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , DNA/genética , DNA/metabolismo , DNA Complementar , Humanos , Oligonucleotídeos/genética
15.
CRISPR J ; 5(4): 536-547, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35833800

RESUMO

Adaptation of clustered regularly interspaced short palindromic repeats (CRISPR) arrays is a crucial process responsible for the unique, adaptive nature of CRISPR-Cas immune systems. The acquisition of new CRISPR spacers from mobile genetic elements has previously been studied for several types of CRISPR-Cas systems. In this study, we used a high-throughput sequencing approach to characterize CRISPR adaptation of the type V-A system from Francisella novicida and the type V-B system from Alicyclobacillus acidoterrestris. In contrast to other class 2 CRISPR-Cas systems, we found that for the type V-A and V-B systems, the Cas12 nucleases are dispensable for spacer acquisition, with only Cas1 and Cas2 (type V-A) or Cas4/1 and Cas2 (type V-B) being necessary and sufficient. Whereas the catalytic activity of Cas4 is not essential for adaptation, Cas4 activity is required for correct protospacer adjacent motif selection in both systems and for prespacer trimming in type V-A. In addition, we provide evidence for acquisition of RecBCD-produced DNA fragments by both systems, but with spacers derived from foreign DNA being incorporated preferentially over those derived from the host chromosome. Our work shows that several spacer acquisition mechanisms are conserved between diverse CRISPR-Cas systems, but also highlights unexpected nuances between similar systems that generally contribute to a bias of gaining immunity against invading genetic elements.


Assuntos
Proteínas Associadas a CRISPR , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA , Endonucleases/genética , Edição de Genes
16.
mSystems ; 7(4): e0035722, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862823

RESUMO

Marine sponges and their microbial symbiotic communities are rich sources of diverse natural products (NPs) that often display biological activity, yet little is known about the global distribution of NPs and the symbionts that produce them. Since the majority of sponge symbionts remain uncultured, it is a challenge to characterize their NP biosynthetic pathways, assess their prevalence within the holobiont, and measure the diversity of NP biosynthetic gene clusters (BGCs) across sponge taxa and environments. Here, we explore the microbial biosynthetic landscapes of three high-microbial-abundance (HMA) sponges from the Atlantic Ocean and the Mediterranean Sea. This data set reveals striking novelty, with <1% of the recovered gene cluster families (GCFs) showing similarity to any characterized BGC. When zooming in on the microbial communities of each sponge, we observed higher variability of specialized metabolic and taxonomic profiles between sponge species than within species. Nonetheless, we identified conservation of GCFs, with 20% of sponge GCFs being shared between at least two sponge species and a GCF core comprised of 6% of GCFs shared across all species. Within this functional core, we identified a set of widespread and diverse GCFs encoding nonribosomal peptide synthetases that are potentially involved in the production of diversified ether lipids, as well as GCFs putatively encoding the production of highly modified proteusins. The present work contributes to the small, yet growing body of data characterizing NP landscapes of marine sponge symbionts and to the cryptic biosynthetic potential contained in this environmental niche. IMPORTANCE Marine sponges and their microbial symbiotic communities are a rich source of diverse natural products (NPs). However, little is known about the sponge NP global distribution landscape and the symbionts that produce them. Here, we make use of recently developed tools to perform untargeted mining and comparative analysis of sponge microbiome metagenomes of three sponge species in the first study considering replicate metagenomes of multiple sponge species. We present an overview of the biosynthetic diversity across these sponge holobionts, which displays extreme biosynthetic novelty. We report not only the conservation of biosynthetic and taxonomic diversity but also a core of conserved specialized metabolic pathways. Finally, we highlight several novel GCFs with unknown ecological function, and observe particularly high biosynthetic potential in Acidobacteriota and Latescibacteria symbionts. This study paves the way toward a better understanding of the marine sponge holobionts' biosynthetic potential and the functional and ecological role of sponge microbiomes.


Assuntos
Produtos Biológicos , Microbiota , Poríferos , Animais , Poríferos/genética , Metagenoma , Microbiota/genética , Bactérias/genética , Produtos Biológicos/metabolismo
17.
Nat Rev Microbiol ; 20(6): 351-364, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34992260

RESUMO

CRISPR-Cas systems of bacteria and archaea comprise chromosomal loci with typical repetitive clusters and associated genes encoding a range of Cas proteins. Adaptation of CRISPR arrays occurs when virus-derived and plasmid-derived sequences are integrated as new CRISPR spacers. Cas proteins use CRISPR-derived RNA guides to specifically recognize and cleave nucleic acids of invading mobile genetic elements. Apart from this role as an adaptive immune system, some CRISPR-associated nucleases are hijacked by mobile genetic elements: viruses use them to attack their prokaryotic hosts, and transposons have adopted CRISPR systems for guided transposition. In addition, some CRISPR-Cas systems control the expression of genes involved in bacterial physiology and virulence. Moreover, pathogenic bacteria may use their Cas nuclease activity indirectly to evade the human immune system or directly to invade the nucleus and damage the chromosomal DNA of infected human cells. Thus, the evolutionary arms race has led to the expansion of exciting variations in CRISPR mechanisms and functionalities. In this Review, we explore the latest insights into the diverse functions of CRISPR-Cas systems beyond adaptive immunity and discuss the implications for the development of CRISPR-based applications.


Assuntos
Sistemas CRISPR-Cas , Vírus , Archaea/fisiologia , Bactérias , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Sistemas CRISPR-Cas/genética , Humanos , Vírus/genética
18.
Trends Biotechnol ; 40(1): 60-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049723

RESUMO

Billions of years of Darwinian evolution has led to the emergence of highly sophisticated and diverse life forms on Earth. Inspired by natural evolution, similar principles have been adopted in laboratory evolution for the fast optimization of genes and proteins for specific applications. In this review, we highlight state-of-the-art laboratory evolution strategies for protein engineering, with a special emphasis on in vitro strategies. We further describe how recent progress in microfluidic technology has allowed the generation and manipulation of artificial compartments for high-throughput laboratory evolution experiments. Expectations for the future are high: we foresee a revolution on-a-chip.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Engenharia de Proteínas
20.
mBio ; 12(6): e0281321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34872358

RESUMO

Arsenic detoxification systems can be found in a wide range of organisms, from bacteria to humans. In a previous study, we discovered an arsenic-responsive transcriptional regulator in the thermophilic bacterium Thermus thermophilus HB27 (TtSmtB). Here, we characterize the arsenic resistance system of T. thermophilus in more detail. We employed TtSmtB-based pulldown assays with protein extracts from cultures treated with arsenate and arsenite to obtain an S-adenosyl-l-methionine (SAM)-dependent arsenite methyltransferase (TtArsM). In vivo and in vitro analyses were performed to shed light on this new component of the arsenic resistance network and its peculiar catalytic mechanism. Heterologous expression of TtarsM in Escherichia coli resulted in arsenite detoxification at mesophilic temperatures. Although TtArsM does not contain a canonical arsenite binding site, the purified protein does catalyze SAM-dependent arsenite methylation with formation of monomethylarsenites (MMAs) and dimethylarsenites (DMAs). In addition, in vitro analyses confirmed the unique interaction between TtArsM and TtSmtB. Next, a highly efficient ThermoCas9-based genome-editing tool was developed to delete the TtArsM-encoding gene on the T. thermophilus genome and to confirm its involvement in the arsenite detoxification system. Finally, the TtarsX efflux pump gene in the T. thermophilus ΔTtarsM genome was substituted by a gene encoding a stabilized yellow fluorescent protein (sYFP) to create a sensitive genome-based bioreporter system for the detection of arsenic ions. IMPORTANCE We here describe the discovery of an unknown protein by using a proteomics approach with a transcriptional regulator as bait. Remarkably, we successfully obtained a novel type of enzyme through the interaction with a transcriptional regulator controlling the expression of this enzyme. Employing this strategy, we isolated TtArsM, the first thermophilic prokaryotic arsenite methyltransferase, as a new enzyme of the arsenic resistance mechanism in T. thermophilus HB27. The atypical arsenite binding site of TtArsM categorizes the enzyme as the first member of a new arsenite methyltransferase type, exclusively present in the Thermus genus. The enzyme methylates arsenite-producing MMAs and DMAs. Furthermore, we developed an hyperthermophilic Cas9-based genome-editing tool, active up to 65°C. The tool allowed us to perform highly efficient, marker-free modifications (either gene deletion or insertion) in the T. thermophilus genome. With these modifications, we confirmed the critical role of TtArsM in the arsenite detoxification system and developed a sensitive whole-cell bioreporter for arsenic ions. We anticipate that the developed tool can be easily adapted for editing the genomes of other thermophilic bacteria, significantly boosting fundamental and metabolic engineering in hyperthermophilic microorganisms.


Assuntos
Arsênio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Metiltransferases/química , Metiltransferases/genética , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Arsênio/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sistemas CRISPR-Cas , Estabilidade Enzimática , Edição de Genes , Metiltransferases/metabolismo , Alinhamento de Sequência , Thermus thermophilus/química , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...