Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Manage ; 55(4): 799-806, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25566832

RESUMO

The number of dominant vegetation types (wet prairies, sawgrass flats, ridges and sloughs, sloughs, and tree islands) historically and currently found in the Everglades, FL, USA, as with other wetlands with standing water, appears to be primarily a function of the magnitude of interannual water-level fluctuations. Analyses of 40 years of water-depth data were used to estimate the magnitude of contemporary (baseline) water-level fluctuations in undisturbed ridge and slough landscapes. Baseline interannual water-level fluctuations above the soil surface were at least 1.5 m. Predicted changes in interannual water-level fluctuations in 2060 were examined for seven climate change scenarios. When rainfall is predicted to increase by 10 %, the wettest scenario, the interannual range of water-level fluctuation increases to 1.8 m above the soil surface in sloughs. When rainfall is predicted to decrease by 10 % and temperatures to increase by 1.5 °C, the driest scenario, the range of interannual range of water-level fluctuations is predicted to decrease to 1.2 m above the soil surface in sloughs. A change of 25-30 cm in interannual water-level fluctuations is needed to change the number of vegetation types in a wetland. This suggests that the two most extreme climate change scenarios could have a significant impact on the overall structure of wetland vegetation, i.e., the number of vegetation types or zones, found in the Everglades.


Assuntos
Mudança Climática , Plantas , Movimentos da Água , Áreas Alagadas , Ecossistema , Florida , Previsões , Modelos Teóricos , Chuva , Solo
2.
J Hist Biol ; 47(2): 293-321, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23864268

RESUMO

Arthur G. Tansley never accepted Frederic E. Clements' view that succession is a developmental process whose final stage, the climax formation, is determined primarily by regional climate and that all other types of vegetation are some kind of successional stage or arrested successional stage. Tansley was convinced that in a given region a variety of environmental factors could produce different kinds of climax formations. At the heart of their dispute was Clements' organicist view of succession, i.e., the formation was a complex organism with an ontogeny and phylogeny. As early as 1905, Tansley offered an alternative to Clements' complex organism, the quasi-organism, but Clements in private and public rejected this compromise. Tansley and other plant ecologists continued to criticize Clements' theories for the next 20 years, but with no impact on Clements. John Phillips, a South African plant ecologist who was a follower of Clements, published a series of papers in 1934 and 1935 defending Clementsian ecology. These papers were triggered by the publication of a letter by another ecologist working in Africa who claimed that there was a strong correlation between soils and various kinds of climax vegetation, which was contrary to what was predicted by Phillips and Clements. In 1935, Tansley published an attack on Phillips and Clements and their developmental theory of succession. In it, he proposed the concept of the ecosystem as a way to get around Clements' monoclimax theory by making the physical environment (e.g., soil chemistry, soil texture, soil moisture) as important a factor as climate, plants and other organisms in determining the composition and characteristics of ecological entities, i.e., ecosystems. Tansley's ecosystem concept quickly replaced Clements' monoclimax theory as a dominant paradigm in ecology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...