Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Allergy ; 2: 676930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35387061

RESUMO

Asthma is a heterogenous disease with different inflammatory subgroups that differ in disease severity. This disease variation is hampering treatment and development of new treatment strategies. Macrophages may contribute to asthma phenotypes by their ability to activate in different ways, i.e., T helper cell 1 (Th1)-associated, Th2-associated, or anti-inflammatory activation. It is currently unknown if these different types of activation correspond with specific inflammatory subgroups of asthma. We hypothesized that eosinophilic asthma would be characterized by having Th2-associated macrophages, whereas neutrophilic asthma would have Th1-associated macrophages and both having few anti-inflammatory macrophages. We quantified macrophage subsets in bronchial biopsies of asthma patients using interferon regulatory factor 5 (IRF5)/CD68 for Th1-associated macrophages, CD206/CD68 for Th2-associated macrophages and interleukin 10 (IL10)/CD68 for anti-inflammatory macrophages. Macrophage subset percentages were investigated in subgroups of asthma as defined by unsupervised clustering using neutrophil/eosinophil counts in sputum and tissue and forced expiratory volume in 1 s (FEV1). Asthma patients clustered into four subgroups: mixed-eosinophilic/neutrophilic, paucigranulocytic, neutrophilic with normal FEV1, and neutrophilic with low FEV1, the latter group consisting mainly of smokers. No differences were found for CD206+ macrophages within asthma subgroups. In contrast, IRF5+ macrophages were significantly higher and IL10+ macrophages lower in neutrophilic asthmatics with low FEV1 as compared to those with neutrophilic asthma and normal FEV1 or mixed-eosinophilic asthma. This study shows that neutrophilic asthma with low FEV1 is associated with high numbers of IRF5+, and low numbers of IL10+ macrophages, which may be the result of combined effects of smoking and having asthma.

2.
Curr Opin Pulm Med ; 26(1): 62-68, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31703000

RESUMO

PURPOSE OF REVIEW: Asthma is a chronic inflammatory disease in which changes in macrophage polarization have been shown to contribute to the pathogenesis. The present review discusses the contribution of changes in macrophage function to asthma related to polarization changes and elaborates on possible therapeutic strategies targeting macrophage function and polarization. RECENT FINDINGS: Macrophage function alterations were shown to contribute to asthma pathology in several ways. One is by impaired phagocytosis and efferocytosis. Another is by changing inflammation, by altered (anti)inflammatory cytokine production and induction of the inflammasome. Finally, macrophages can contribute to remodeling in asthma, although little evidence is present in humans yet.Novel therapeutic strategies targeting macrophages include dampening inflammation by changing polarization or by inhibiting the NLRP3 inflammasome, and by targeting efferocytosis. However, many of these studies were performed in animal models leaving their translation to the clinic for future research. SUMMARY: The present review emphasizes the contribution of altered macrophage function to asthma, gives insight in possible new therapeutic strategies targeting macrophages, and indicates which knowledge gaps remain open.


Assuntos
Asma/imunologia , Inflamação/patologia , Macrófagos Alveolares/fisiologia , Animais , Polaridade Celular/fisiologia , Humanos , Fagocitose/fisiologia
3.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L369-L384, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30520687

RESUMO

Oxidative stress is a common feature of obstructive airway diseases like asthma and chronic obstructive pulmonary disease (COPD). Lung macrophages are key innate immune cells that can generate oxidants and are known to display aberrant polarization patterns and defective phagocytic responses in these diseases. Whether these characteristics are linked in one way or another and whether they contribute to the onset and severity of exacerbations in asthma and COPD remain poorly understood. Insight into oxidative stress, macrophages, and their interactions may be important in fully understanding acute worsening of lung disease. This review therefore highlights the current state of the art regarding the role of oxidative stress and macrophages in exacerbations of asthma and COPD. It shows that oxidative stress can attenuate macrophage function, which may result in impaired responses toward exacerbating triggers and may contribute to exaggerated inflammation in the airways.


Assuntos
Asma/imunologia , Macrófagos/imunologia , Estresse Oxidativo/fisiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Humanos , Inflamação/imunologia , Macrófagos Alveolares/imunologia
4.
Sci Rep ; 7(1): 12570, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974738

RESUMO

The enzyme tartrate resistant acid phosphatase (TRAP, two isoforms 5a and 5b) is highly expressed in alveolar macrophages, but its function there is unclear and potent selective inhibitors of TRAP are required to assess functional aspects of the protein. We found higher TRAP activity/expression in lungs of patients with chronic obstructive pulmonary disease (COPD) and asthma compared to controls and more TRAP activity in lungs of mice with experimental COPD or asthma. Stimuli related to asthma and/or COPD were tested for their capacity to induce TRAP. Receptor activator of NF-κb ligand (RANKL) and Xanthine/Xanthine Oxidase induced TRAP mRNA expression in mouse macrophages, but only RANKL also induced TRAP activity in mouse lung slices. Several Au(III) coordination compounds were tested for their ability to inhibit TRAP activity and [Au(4,4'-dimethoxy-2,2'-bipyridine)Cl2][PF6] (AubipyOMe) was found to be the most potent inhibitor of TRAP5a and 5b activity reported to date (IC50 1.3 and 1.8 µM respectively). AubipyOMe also inhibited TRAP activity in murine macrophage and human lung tissue extracts. In a functional assay with physiological TRAP substrate osteopontin, AubipyOMe inhibited mouse macrophage migration over osteopontin-coated membranes. In conclusion, higher TRAP expression/activity are associated with COPD and asthma and TRAP is involved in regulating macrophage migration.


Assuntos
Asma/tratamento farmacológico , Macrófagos Alveolares/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fosfatase Ácida Resistente a Tartarato/antagonistas & inibidores , Animais , Asma/genética , Asma/patologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ouro/química , Humanos , Camundongos , Osteopontina/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Ligante RANK/genética , RNA Mensageiro/genética , Fosfatase Ácida Resistente a Tartarato/química , Fosfatase Ácida Resistente a Tartarato/genética , Xantina Oxidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...