Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(38): 8493-8499, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721973

RESUMO

The catalytic oxidation of CO and CH4 can be strongly influenced by the structures of oxide phases that form on metallic catalysts during reaction. Here, we show that an epitaxial PdO(100) structure forms at temperatures above 600 K during the oxidation of Pd(100) by gaseous O atoms as well as exposure to O2-rich mixtures at millibar partial pressures. The oxidation of Pd(100) by gaseous O atoms preferentially generates an epitaxial, multilayer PdO(101) structure at 500 K, but initiating Pd(100) oxidation above 600 K causes an epitaxial PdO(100) structure to grow concurrently with PdO(101) and produces a thicker and rougher oxide. We present evidence that this change in the oxidation behavior is caused by a temperature-induced change in the stability of small PdO domains that initiate oxidation. Our discovery of the epitaxial PdO(100) structure may be significant for developing relationships among oxide structure, catalytic activity, and reaction conditions for applications of oxidation catalysis.

2.
Inorg Chem ; 56(1): 327-335, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28001389

RESUMO

The reaction of the lacunary polyoxometalate precursor Na9[B-α-BiW9O33]·19.5H2O with Cu(II) ions was explored in search of new economic ways to copper tungstobismuthates as interesting prototypes for water oxidation and reduction catalysts. The emerging series of new 0D-3D polyoxometalate architectures with distinct copper cores was structurally characterized. Na6Rb6[Cu3(H2O)3(BiW9O33)2] (Cu-4) and 3D-K6.56Cu0.43H2.20[(Cu3Cl)(K2.62Cu0.38(H2O)3)(B-α-BiW9O33)2]·13H2O (Cu-5) display a Cu3(H2O)3 core. The 2D representatives Na12[Cu2(H2O)4Cl2(BiW10O35)2] (Cu-1a), Na10[Cu2(H2O)6(BiW10O35)2] (Cu-1b), 2D-Na7K3Cu0.5Cl[Cu2(H2O)4(BiW10O35)2] (Cu-2), and 2D-Na5.5K2.5Cu[Cu2(H2O)4(BiW10O35)2] (Cu-3) contain Cu2(H2O)nW2O4 cores. Interestingly, the bismuth-free 1D paratungstate B Na4K4Cu[H2W12O42] (Cu-6) is formed through reassembly of the precursor. Cu-5 displays a disordered transition metal core, implying the presence of the polyanions [Cu4(H2O)4(BiW9O33)2]10- and [Cu5(H2O)5(BiW9O33)2]8-. The magnetic properties of Cu-5 as well as its activity as visible-light-driven H2 and O2 evolution catalyst were evaluated.

3.
Chempluschem ; 80(9): 1389-1398, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31973363

RESUMO

In search of structure-activity relationships for polyoxometalate (POM)-based water reduction catalysts, nickel-monosubstituted Keggin-type POMs ([Ni(H2 O)XW11 O39 ]n- ; XP, Si, Ge) were compared with respect to their activity in photochemical hydrogen evolution. The title compound series was characterized by single-crystal X-ray diffraction methods and a wide range of spectroscopic and electrochemical techniques. Nickel substitution was identified as a crucial feature for catalytic activity through comparison with nickel-free reference POMs. Furthermore, turnover number (TON) and turnover frequency strongly depended on the heteroatom X, and the highest TON among the series was recorded for [Ni(H2 O)GeW11 O39 ]6- . Photochemical hydrogen evolution activity was compared with redox and onset potentials obtained from electrochemical analyses. Furthermore, activity trends were correlated with electronic structure properties derived from density functional theory calculations.

4.
J Am Chem Soc ; 133(18): 7084-95, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21500782

RESUMO

A structure-activity study was carried out for Ni catalyzed alkyl-alkyl Kumada-type cross coupling reactions. A series of new nickel(II) complexes including those with tridentate pincer bis(amino)amide ligands ((R)N(2)N) and those with bidentate mixed amino-amide ligands ((R)NN) were synthesized and structurally characterized. The coordination geometries of these complexes range from square planar, tetrahedral, to square pyramidal. The complexes had been examined as precatalysts for cross coupling of nonactivated alkyl halides, particularly secondary alkyl iodides, with alkyl Grignard reagents. Comparison was made to the results obtained with the previously reported Ni pincer complex [((Me)N(2)N)NiCl]. A transmetalation site in the precatalysts is necessary for the catalysis. The coordination geometries and spin-states of the precatalysts have a small or no influence. The work led to the discovery of several well-defined Ni catalysts that are significantly more active and efficient than the pincer complex [((Me)N(2)N)NiCl] for the coupling of secondary alkyl halides. The best two catalysts are [((H)NN)Ni(PPh(3))Cl] and [((H)NN)Ni(2,4-lutidine)Cl]. The improved activity and efficiency was attributed to the fact that phosphine and lutidine ligands in these complexes can dissociate from the Ni center during catalysis. The activation of alkyl halides was shown to proceed via a radical mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...