Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(5-2): 055211, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115527

RESUMO

We present measurements of the temporal decay rate of one-dimensional (1D), linear Langmuir waves excited by an ultrashort laser pulse. Langmuir waves with relative amplitudes of approximately 6% were driven by 1.7J, 50fs laser pulses in hydrogen and deuterium plasmas of density n_{e0}=8.4×10^{17}cm^{-3}. The wakefield lifetimes were measured to be τ_{wf}^{H_{2}}=(9±2) ps and τ_{wf}^{D_{2}}=(16±8) ps, respectively, for hydrogen and deuterium. The experimental results were found to be in good agreement with 2D particle-in-cell simulations. In addition to being of fundamental interest, these results are particularly relevant to the development of laser wakefield accelerators and wakefield acceleration schemes using multiple pulses, such as multipulse laser wakefield accelerators.

2.
Phys Rev E ; 107(2): L023201, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932619

RESUMO

We investigate the growth of ion density perturbations in large-amplitude linear laser wakefields via two-dimensional particle-in-cell simulations. Growth rates and wave numbers are found to be consistent with a longitudinal strong-field modulational instability. We examine the transverse dependence of the instability for a Gaussian wakefield envelope and show that growth rates and wave numbers can be maximized off axis. On-axis growth rates are found to decrease with increasing ion mass or electron temperature. These results are in close agreement with the dispersion relation of a Langmuir wave with an energy density that is large compared to the plasma thermal energy density. The implications for wakefield accelerators, in particular multipulse schemes, are discussed.

3.
Phys Rev E ; 102(5-1): 053201, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33327141

RESUMO

We demonstrate through experiments and numerical simulations that low-density, low-loss, meter-scale plasma channels can be generated by employing a conditioning laser pulse to ionize the neutral gas collar surrounding a hydrodynamic optical-field-ionized (HOFI) plasma channel. We use particle-in-cell simulations to show that the leading edge of the conditioning pulse ionizes the neutral gas collar to generate a deep, low-loss plasma channel which guides the bulk of the conditioning pulse itself as well as any subsequently injected pulses. In proof-of-principle experiments, we generate conditioned HOFI (CHOFI) waveguides with axial electron densities of n_{e0}≈1×10^{17}cm^{-3} and a matched spot size of 26µm. The power attenuation length of these CHOFI channels was calculated to be L_{att}=(21±3)m, more than two orders of magnitude longer than achieved by HOFI channels. Hydrodynamic and particle-in-cell simulations demonstrate that meter-scale CHOFI waveguides with attenuation lengths exceeding 1 m could be generated with a total laser pulse energy of only 1.2 J per meter of channel. The properties of CHOFI channels are ideally suited to many applications in high-intensity light-matter interactions, including multi-GeV plasma accelerator stages operating at high pulse repetition rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...