Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Invest Radiol ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329824

RESUMO

OBJECTIVES: The aim of this study was to assess the diagnostic value and accuracy of a deep learning (DL)-accelerated fluid attenuated inversion recovery (FLAIR) sequence with fat saturation (FS) in patients with inflammatory synovitis of the knee. MATERIALS AND METHODS: Patients with suspected knee synovitis were retrospectively included between January and September 2023. All patients underwent a 3 T knee magnetic resonance imaging including a DL-accelerated noncontrast FLAIR FS sequence (acquisition time: 1 minute 38 seconds) and a contrast-enhanced (CE) T1-weighted FS sequence (acquisition time: 4 minutes 50 seconds), which served as reference standard. All knees were scored by 2 radiologists using the semiquantitative modified knee synovitis score, effusion synovitis score, and Hoffa inflammation score. Diagnostic confidence, image quality, and image artifacts were rated on separate Likert scales. Wilcoxon signed rank test was used to compare the semiquantitative scores. Interreader and intrareader reproducibility were calculated using Cohen κ. RESULTS: Fifty-five patients (mean age, 52 ± 17 years; 28 females) were included in the study. Twenty-seven patients (49%) had mild to moderate synovitis (synovitis score 6-13), and 17 patients (31%) had severe synovitis (synovitis score >14). No signs of synovitis were detected in 11 patients (20%) (synovitis score <5). Semiquantitative assessment of the whole knee synovitis score showed no significant difference between the DL-accelerated FLAIR sequence and the CE T1-weighted sequence (mean FLAIR score: 10.69 ± 8.83, T1 turbo spin-echo FS: 10.74 ± 10.32; P = 0.521). Both interreader and intrareader reproducibility were excellent (range Cohen κ [0.82-0.96]). CONCLUSIONS: Assessment of inflammatory knee synovitis using a DL-accelerated noncontrast FLAIR FS sequence was feasible and equivalent to CE T1-weighted FS imaging.

2.
Eur Heart J Cardiovasc Imaging ; 24(3): 373-382, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35639682

RESUMO

AIMS: Myocardial involvement is common in patients with systemic sclerosis (SSc) and causes myocardial fibrosis and subtle ventricular dysfunction. However, the temporal onset of myocardial involvement during the progression of the disease and its prognostic value are yet unknown. We used cardiovascular magnetic resonance (CMR) to investigate subclinical functional impairment and diffuse myocardial fibrosis in patients with very early diagnosis of SSc (VEDOSS) and established SSc and examined whether this was associated with mortality. METHODS AND RESULTS: One hundred and ten SSc patients (86 established SSc, 24 VEDOSS) and 15 healthy controls were prospectively recruited. The patients were followed-up for a median duration of 7.0 years (interquartile range 6.0-7.3 years). Study subjects underwent CMR including assessment of myocardial fibrosis [native T1 and extracellular volume (ECV)] and measurement of global longitudinal (GLS) and circumferential (GCS) myocardial strain. Native T1 values and ECV were elevated in VEDOSS and SSc patients compared with controls (P < 0.001). GLS was similar in VEDOSS and controls but significantly impaired in patients with established SSc (P < 0.001). GCS was similar over all groups (P = 0.88). There were 12 deaths during follow-up. Elevated native T1 [hazard ratio (HR) 5.8, 95% confidence interval (CI): 1.7-20.4; P = 0.006] and reduced GLS (HR 6.1, 95% CI: 1.3-29.9; P = 0.038) identified subjects with increased risk of death. Only native T1 was predictive for cardiovascular mortality (P < 0.001). CONCLUSION: Subclinical myocardial involvement first manifests as diffuse myocardial fibrosis identified by the expansion of ECV and increased native T1 in VEDOSS patients while subtle functional impairment only occurs in established SSc. Native T1 and GLS have prognostic value for all-cause mortality in SSc patients.


Assuntos
Cardiomiopatias , Escleroderma Sistêmico , Humanos , Prognóstico , Função Ventricular Esquerda , Estudos Prospectivos , Cardiomiopatias/patologia , Miocárdio/patologia , Fibrose , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Valor Preditivo dos Testes
3.
Invest Radiol ; 57(6): 387-398, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025835

RESUMO

OBJECTIVES: The aim of this study was to demonstrate the feasibility and efficacy of basic (increased receive bandwidth) and advanced (view-angle tilting [VAT] and slice-encoding for metal artifact correction [SEMAC]) techniques for metal-artifact reduction in ultra-high field 7-T magnetic resonance imaging (MRI). MATERIALS AND METHODS: In this experimental study, we performed 7-T MRI of titanium alloy phantom models composed of a spinal pedicle screw (phantom 1) and an intervertebral cage (phantom 2) centered in a rectangular LEGO frame, embedded in deionized-water-gadolinium (0.1 mmol/L) solution. The following turbo spin-echo sequences were acquired: (1) nonoptimized standard sequence; (2) optimized, that is, increased receive bandwidth sequence (oBW); (3) VAT; (4) combination of oBW and VAT (oBW-VAT); and (5) SEMAC. Two fellowship-trained musculoskeletal radiologists independently evaluated images regarding peri-implant signal void and geometric distortion (a, angle measurement and b, presence of circular shape loss). Statistics included Friedman test and Cochran Q test with Bonferroni correction for multiple comparisons. P values <0.05 were considered to represent statistical significance. RESULTS: All metal-artifact reduction techniques reduced peri-implant signal voids and diminished geometric distortions, with oBW-VAT and SEMAC being most efficient. Compared with nonoptimized sequences, oBW-VAT and SEMAC produced significantly smaller peri-implant signal voids (all P ≤ 0.008) and significantly smaller distortion angles (P ≤ 0.001). Only SEMAC could significantly reduce distortions of circular shapes in the peri-implant frame (P ≤ 0.006). Notably, increasing the number of slice-encoding steps in SEMAC sequences did not lead to a significantly better metal-artifact reduction (all P ≥ 0.257). CONCLUSIONS: The use of basic and advanced methods for metal-artifact reduction at 7-T MRI is feasible and effective. Both a combination of increased receive bandwidth and VAT as well as SEMAC significantly reduce the peri-implant signal void and geometric distortion around metal implants.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Estudos de Viabilidade , Imageamento por Ressonância Magnética/métodos , Metais , Imagens de Fantasmas
4.
J Cardiovasc Magn Reson ; 23(1): 103, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34538266

RESUMO

BACKGROUND: We examined the dynamic response of the myocardium to infarction in a longitudinal porcine study using relaxometry, functional as well as diffusion cardiovascular magnetic resonance (CMR). We sought to compare non contrast CMR methods like relaxometry and in-vivo diffusion to contrast enhanced imaging and investigate the link of microstructural and functional changes in the acute and chronically infarcted heart. METHODS: CMR was performed on five myocardial infarction pigs and four healthy controls. In the infarction group, measurements were obtained 2 weeks before 90 min occlusion of the left circumflex artery, 6 days after ischemia and at 5 as well as 9 weeks as chronic follow-up. The timing of measurements was replicated in the control cohort. Imaging consisted of functional cine imaging, 3D tagging, T2 mapping, native as well as gadolinium enhanced T1 mapping, cardiac diffusion tensor imaging, and late gadolinium enhancement imaging. RESULTS: Native T1, extracellular volume (ECV) and mean diffusivity (MD) were significantly elevated in the infarcted region while fractional anisotropy (FA) was significantly reduced. During the transition from acute to chronic stages, native T1 presented minor changes (< 3%). ECV as well as MD increased from acute to the chronic stages compared to baseline: ECV: 125 ± 24% (day 6) 157 ± 24% (week 5) 146 ± 60% (week 9), MD: 17 ± 7% (day 6) 33 ± 14% (week 5) 29 ± 15% (week 9) and FA was further reduced: - 31 ± 10% (day 6) - 38 ± 8% (week 5) - 36 ± 14% (week 9). T2 as marker for myocardial edema was significantly increased in the ischemic area only during the acute stage (83 ± 3 ms infarction vs. 58 ± 2 ms control p < 0.001 and 61 ± 2 ms in the remote area p < 0.001). The analysis of functional imaging revealed reduced left ventricular ejection fraction, global longitudinal strain and torsion in the infarct group. At the same time the transmural helix angle (HA) gradient was steeper in the chronic follow-up and a correlation between longitudinal strain and transmural HA gradient was detected (r = 0.59 with p < 0.05). Comparing non-gadolinium enhanced data T2 mapping showed the largest relative change between infarct and remote during the acute stage (+ 33 ± 4% day 6, with p = 0.013 T2 vs. MD, p = 0.009 T2 vs. FA and p = 0.01 T2 vs. T1) while FA exhibited the largest relative change between infarct and remote during the chronic follow-up (+ 31 ± 2% week 5, with p = N.S. FA vs. MD, p = 0.03 FA vs. T2 and p = 0.003 FA vs. T1). Overall, diffusion parameters provided a higher contrast (> 23% for MD and > 27% for FA) during follow-up compared to relaxometry (T1 17-18%/T2 10-20%). CONCLUSION: During chronic follow-up after myocardial infarction, cardiac diffusion tensor imaging provides a higher sensitivity for mapping microstructural alterations when compared to non-contrast enhanced relaxometry with the added benefit of providing directional tensor information to assess remodelling of myocyte aggregate orientations, which cannot be otherwise assessed.


Assuntos
Infarto do Miocárdio , Função Ventricular Esquerda , Animais , Meios de Contraste , Imagem de Tensor de Difusão , Gadolínio , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio , Valor Preditivo dos Testes , Volume Sistólico , Suínos
5.
Invest Radiol ; 56(9): 545-552, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33813573

RESUMO

OBJECTIVES: Through-slice chemical shift artifacts in state-of-the-art turbo-spin-echo (TSE) images can be significantly more severe at 7 T than at lower field strengths. In musculoskeletal applications, these artifacts appear similar to bone fractures or neoplastic bone marrow disease. The objective of this work was to explore and reduce through-slice chemical shift artifacts in 2-dimensional (2D) TSE imaging at 7 T. MATERIALS AND METHODS: This prospective study was approved by the local ethics board. The bandwidths of the excitation and refocusing radiofrequency (RF) pulses of a prototype 2D TSE sequence were individually modified and their effect on the slice profiles and relative slice locations of water and fat spins was assessed in an oil-water phantom. Based on these results, it was hypothesized that the combination of matched and increased excitation and refocusing RF pulse bandwidths ("MIB") of 1500 Hz would enable 2D TSE imaging with significantly reduced chemical shift artifacts compared with a state-of-the-art sequence with unmatched and moderate RF pulse bandwidths ("UMB") of 1095 and 682 Hz.A series of T1-weighted sagittal knee examinations in 10 healthy human subjects were acquired using the MIB and UMB sequences and independently evaluated by 2 radiologists. They measured the width of chemical shift artifacts at 2 standardized locations and graded the perceived negative effect of chemical shift artifacts on image quality in the bones and in the whole gastrocnemius muscle on a 5-point scale. Similar knee, wrist, and foot images were acquired in a single subject. Signal-to-noise ratios in the femoral bone marrow were computed between the UMB and MIB sequences. RESULTS: Phantom measurements confirmed the expected spatial separation of simultaneously affected water and fat slices between 40% and 200% of the prescribed slice thickness for RF pulse bandwidths between 2500 and 500 Hz. Through-slice chemical shift artifacts at the bone-cartilage interface were significantly smaller with MIB than with UMB (location 1: 0.35 ± 0.20 mm vs 1.27 ± 0.27 mm, P < 0.001; location 2: 0.25 ± 0.13 mm vs 1.48 ± 0.46 mm, P < 0.001; intraclass correlation coefficient = 0.98). The negative effect of chemical shift artifacts on image quality was significantly smaller with MIB than with UMB (bone: 2 ± 0 vs 4 ± 1, P < 0.004 [both readers]; muscle: 3 ± 0 vs 2 ± 0, P < 0.004 [both readers]; κ = 0.69). The signal-to-noise ratio of the UMB and MIB sequences was comparable, with a ratio of 99 ± 7%. Images acquired using the UMB sequence displayed numerous artifactual hyperintensities and diffuse, as well as locally severe, fat signal loss in all examined regions, whereas the MIB sequence consistently yielded high image quality with bright T1-weighted fat signal and excellent depiction of fine tissue structures. CONCLUSIONS: On 7 T systems, the selection of high and matched RF bandwidths for excitation and refocusing pulses for 2D TSE imaging without fat suppression showed consistently better image quality than state-of-the-art sequences with unmatched lower RF pulse bandwidths.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Humanos , Imagens de Fantasmas , Estudos Prospectivos , Razão Sinal-Ruído
7.
Magn Reson Med ; 85(1): 209-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32720406

RESUMO

PURPOSE: Although several MRI methods have been explored to achieve in vivo myelin quantification, imaging the whole brain in clinically acceptable times and sufficiently high resolution remains challenging. To address this problem, this work investigates the acceleration of multi-echo T2 acquisitions based on the multi-echo gradient and spin echo (GRASE) sequence using CAIPIRINHA undersampling and adapted k-space reordering patterns. METHODS: A prototype multi-echo GRASE sequence supporting CAIPIRINHA parallel imaging was implemented. Multi-echo T2 data were acquired from 12 volunteers using the implemented sequence (1.6 × 1.6 × 1.6 mm3 , 84 slices, acquisition time [TA] = 10:30 min) and a multi-echo spin echo (MESE) sequence as reference (1.6 × 1.6 × 3.2 mm3 , single-slice, TA = 5:41 min). Myelin water fraction (MWF) maps derived from both acquisitions were compared via correlation and Bland-Altman analyses. In addition, scan-rescan datasets were acquired to evaluate the repeatability of the derived maps. RESULTS: Resulting maps from the MESE and multi-echo GRASE sequences were found to be correlated (r = 0.83). The Bland-Altman analysis revealed a mean bias of -0.2% (P = .24) with the limits of agreement ranging from -3.7% to 3.3%. The Pearson's correlation coefficient among MWF values obtained from the scan-rescan datasets was found to be 0.95 and the mean bias equal to 0.11% (P = .32), indicating good repeatability of the retrieved maps. CONCLUSION: By combining a 3D multi-echo GRASE sequence with CAIPIRINHA sampling, whole-brain MWF maps were obtained in 10:30 min with 1.6 mm isotropic resolution. The good correlation with conventional MESE-based maps demonstrates that the implemented sequence may be a promising alternative to time-consuming MESE acquisitions.


Assuntos
Processamento de Imagem Assistida por Computador , Bainha de Mielina , Água , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
8.
Magn Reson Med ; 84(5): 2561-2576, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32530062

RESUMO

PURPOSE: Cardiac diffusion tensor imaging using EPI readout is prone to image distortions in the presence of field inhomogeneities. In this work, a framework to analyze and correct image distortions in cardiac diffusion tensor imaging is presented. METHODS: A multi-coil reconstruction framework was implemented to enable field map-based off-resonance correction. Numerical simulations were used to examine reconstruction performance for EPI phase-encode directions blip up-down and down-up for different degrees of off-resonance gradients and varying field map resolution. The impact of coil encoding was analyzed using the g-factor and normalized RMSE. Finally, the proposed method was tested on free-breathing in vivo cardiac diffusion tensor imaging data acquired in healthy subjects at 3 Tesla. RESULTS: Depending on the local field map gradient strength and polarity and the selected phase-encode direction, field inhomogeneities lead to either local spatial compression or stretching with standard image reconstruction. Although spatial compression results in loss of image resolution upon field map-based reconstruction, spatial stretching can be recovered once multiple receive coils are utilized. Multi-coil reconstruction was found to reduce the normalized RMSE from 34.3% to 8.1% for image compression, and 33.6% to 1.8% for image stretching, with resulting average g-factors 14.7 ± 2.9 and 1.2 ± 0.1, respectively. In vivo, multi-coil field map-based reconstruction yielded improved alignment of angle maps with anatomical cine data. CONCLUSION: Multi-coil, field map-based image reconstruction for echo-planar cardiac diffusion tensor imaging allows accurate image reconstruction provided that the phase-encode direction and polarity is chosen to principally align with the direction and polarity of the prominent gradients of field inhomogeneities.


Assuntos
Artefatos , Imagem de Tensor de Difusão , Algoritmos , Encéfalo , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Humanos , Processamento de Imagem Assistida por Computador
9.
Magn Reson Med ; 84(1): 277-288, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31868257

RESUMO

PURPOSE: To address motion in cardiac DWI, stimulated-echo acquisition mode (STEAM) and second-order motion-compensated spin-echo (SE) sequences have been proposed. Despite applying motion-compensation strategies, residual motion can cause misleading signal attenuation. The purpose of this study is to estimate the motion-induced error in both sequences by analysis of image phase. METHODS: Diffusion-weighted motion-compensated SE sequences and STEAM imaging was applied in vivo with diffusion encoding along 3 orthogonal directions. A b-value range of 100 to 600 s/mm2 and trigger delays of 25%, 50%, and 75% of end systole and middiastole were used. Eddy-current contributions were obtained from phantom measurements. After computation of motion-induced phase maps, the amount of signal dephasing was computed from phase gradients, and the resulting errors in diffusion tensor parameters were calculated. RESULTS: Motion-induced dephasing from the STEAM sequence showed less dependency on the b-value and no dependency on the heart phase, whereas SE imaging performed best at 75% end systole followed by 50% end systole and middiastole. For a typical experimental setting, errors of 3.3%/3.0% mean diffusivity, 4.9%/4.8% fractional anisotropy, 2.9º/3.2º helix angulation, 0.8º/0.7º transverse angulation, and 9.9º/10.0º sheet angulation (SE/STEAM) were calculated. CONCLUSION: Image phase contains valuable information regarding uncompensated motion and eddy currents in cardiac DTI. Although the trigger delay window for SE is narrower compared with the STEAM-based approach, imaging in both systole and diastole is feasible and both sequences perform similarly if the trigger delays are selected carefully with SE.


Assuntos
Imagem de Tensor de Difusão , Coração , Anisotropia , Imagem de Difusão por Ressonância Magnética , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Movimento (Física)
10.
J Cardiovasc Magn Reson ; 21(1): 56, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31484544

RESUMO

BACKGROUND: In-vivo cardiovascular magnetic resonance (CMR) diffusion tensor imaging (DTI) allows imaging of alterations of cardiac fiber architecture in diseased hearts. Cardiac amyloidosis (CA) causes myocardial infiltration of misfolded proteins with unknown consequences for myocardial microstructure. This study applied CMR DTI in CA to assess microstructural alterations and their consequences for myocardial function compared to healthy controls. METHODS: Ten patients with CA (8 AL, 2 ATTR) and ten healthy controls were studied using a diffusion-weighed second-order motion-compensated spin-echo sequence at 1.5 T. Additionally, left ventricular morphology, ejection fraction, strain and native T1 values were obtained in all subjects. In CA patients, T1 mapping was repeated after the administration of gadolinium for extracellular volume fraction (ECV) calculation. CMR DTI analysis was performed to yield the scalar diffusion metrics mean diffusivity (MD) and fractional anisotropy (FA) as well as the characteristics of myofiber orientation including helix, transverse and E2A sheet angle (HA, TA, E2A). RESULTS: MD and FA were found to be significantly different between CA patients and healthy controls (MD 1.77 ± 0.17 10- 3 vs 1.41 ± 0.07 10- 3 mm2/s, p <  0.001; FA 0.25 ± 0.04 vs 0.35 ± 0.03, p <  0.001). MD demonstrated an excellent correlation with native T1 (r = 0.908, p <  0.001) while FA showed a significant correlation with ECV in the CA population (r = - 0.851, p <  0.002). HA exhibited a more circumferential orientation of myofibers in CA patients, in conjunction with a higher TA standard deviation and a higher absolute E2A sheet angle. The transmural HA slope was found to be strongly correlated with the global longitudinal strain (r = 0.921, p < 0.001). CONCLUSION: CMR DTI reveals significant alterations of scalar diffusion metrics in CA patients versus healthy controls. Elevated MD and lower FA values indicate myocardial disarray with higher diffusion in CA that correlates well with native T1 and ECV measures. In CA patients, CMR DTI showed pronounced circumferential orientation of the myofibers, which may provide the rationale for the reduction of global longitudinal strain that occurs in amyloidosis patients. Accordingly, CMR DTI captures specific features of amyloid infiltration, which provides a deeper understanding of the microstructural consequences of CA.


Assuntos
Amiloidose/diagnóstico por imagem , Cardiomiopatias/diagnóstico por imagem , Imagem de Tensor de Difusão , Imagem Cinética por Ressonância Magnética , Idoso , Amiloidose/patologia , Amiloidose/fisiopatologia , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Estudos de Casos e Controles , Meios de Contraste/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Compostos Organometálicos/administração & dosagem , Valor Preditivo dos Testes , Estudos Prospectivos , Volume Sistólico , Função Ventricular Esquerda
11.
Magn Reson Med ; 82(3): 1150-1163, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31025435

RESUMO

PURPOSE: Mapping intravoxel incoherent motion (IVIM) in the heart remains challenging despite advances in cardiac DWI and DTI. In the present work, simulations and experimental imaging are used to compare the IVIM encoding efficiency of spin-echo- and stimulated-echo-based DWI/DTI for assessing myocardial perfusion. METHODS: Using normalized phase distributions and statistical models of capillary networks derived from histological studies, along with typical diffusion gradient waveforms for in vivo cardiac DWI/DTI, Monte Carlo simulations were performed. The simulation results were compared to IVIM measurements of perfused porcine hearts regarding both magnitude and phase modulation. An IVIM tensor model was used to account for anisotropy of the capillary network, and potential bias of parameter estimation was reported based on simulations. RESULTS: Both computer simulations and experimental data demonstrate a low sensitivity of spin-echo DWI/DTI sequences for IVIM parameters, whereas stimulated-echo-based DWI/DTI with typical mixing times can differentiate between no-flow baseline and perfused myocardium (+129% IVIM-derived flow). In addition, ischemic territories induced by coronary occlusion could be successfully detected. With increasing order of motion compensation (M0/M1/M2) of the diffusion encoding gradients, as required for cardiac in vivo spin-echo DWI/DTI, the low IVIM sensitivity of spin-echo DWI/DTI decreased further in simulations: maximum attenuations of perfusion compartment 52/13/5% (b = 500 s/mm2 ). CONCLUSION: Given the short encoding time of spin-echo-based DWI/DTI sequences, a limited perfusion sensitivity results, in particular in combination with motion-compensated diffusion gradients. In contrast, stimulated-echo based DWI/DTI has the potential to identify perfusion changes in cardiac IVIM in vivo.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Animais , Simulação por Computador , Feminino , Movimento , Suínos
12.
J Cardiovasc Magn Reson ; 21(1): 10, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30700314

RESUMO

BACKGROUND: Cardiac involvement of amyloidosis leads to left-ventricular (LV) wall thickening with progressive heart failure requiring rehospitalization. Cardiovascular magnetic resonance (CMR) is a valuable tool to non-invasively assess myocardial thickening as well as structural changes. Proton CMR spectroscopy (1H-CMRS) additionally allows assessing metabolites including triglycerides (TG) and total creatine (CR). However, opposing results exist regarding utilization of these metabolites in LV hypertrophy or thickening. Therefore, the aim of this study was to measure metabolic alterations using 1H-CMRS in a group of patients with thickened myocardium caused by cardiac amyloidosis. METHODS: 1H-CMRS was performed on a 1.5 T system (Achieva, Philips Healthcare, Best, The Netherlands) using a 5-channel receive coil in 11 patients with cardiac amyloidosis (60.5 ± 11.4 years, 8 males) and 11 age- and gender-matched controls (63.2 ± 8.9 years, 8 males). After cardiac morphology and function assessment, proton spectra from the interventricular septum (IVS) were acquired using a double-triggered PRESS sequence. Post-processing was performed using a customized reconstruction pipeline based on ReconFrame (GyroTools LLC, Zurich, Switzerland). Spectra were fitted in jMRUI/AMARES and the ratios of triglyceride-to-water (TG/W) and total creatine-to-water (CR/W) were calculated. RESULTS: Besides an increased LV mass and a thickened IVS concomitant to the disease characteristics, patients with cardiac amyloidosis presented with decreased global longitudinal (GLS) and circumferential (GCS) strain. LV ejection fraction was preserved relative to controls (60.0 ± 13.2 vs. 66.1 ± 4.3%, p = 0.17). Myocardial TG/W ratios were significantly decreased compared to controls (0.53 ± 0.23 vs. 0.80 ± 0.26%, p = 0.015). CR/W ratios did not show a difference between both groups, but a higher standard deviation in patients with cardiac amyloidosis was observed. Pearson correlation revealed a negative association between elevated LV mass and TG/W (R = - 0.59, p = 0.004) as well as GCS (R = - 0.48, p = 0.025). CONCLUSIONS: A decrease in myocardial TG/W can be detected in patients with cardiac amyloidosis alongside impaired cardiac function with an association to the degree of myocardial thickening. Accordingly, 1H-CMRS may provide an additional diagnostic tool to gauge progression of cardiac amyloidosis along with standard imaging sequences. TRIAL REGISTRATION: EK 2013-0132.


Assuntos
Amiloidose/diagnóstico , Cardiomiopatias/diagnóstico , Miocárdio/citologia , Espectroscopia de Prótons por Ressonância Magnética , Triglicerídeos/análise , Idoso , Amiloidose/metabolismo , Amiloidose/patologia , Biomarcadores/análise , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Estudos de Casos e Controles , Creatina/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Valor Preditivo dos Testes , Prognóstico
13.
NMR Biomed ; 32(1): e4022, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403426

RESUMO

Intracardiac blood flow patterns are affected by the morphology of cardiac structures and are set up to support the heart's pump function. Exercise affects contractility and chamber size as well as pre- and afterload. The aim of this study was to test the feasibility of four-dimensional phase contrast cardiovascular MRI under pharmacological stress and to study left ventricular blood flow under stress. 4D flow data were successfully acquired and analysed in 12 animals. During dobutamine infusion, heart rate and ejection fraction increased (82 ± 5 bpm versus 124 ± 3 bpm/46 ± 9% versus 65 ± 7%; both p < 0.05). A decrease in left ventricular end-diastolic volume (72 ± 14 mL versus 55 ± 8 mL; p < 0.05) and end-systolic volume (40 ± 15 mL versus 19 ± 6 mL; p < 0.05) but no change in stroke volume were observed. Trans-mitral diastolic inflow velocity increased under dobutamine and the trajectory of inflowing blood was directed towards the anterior septum with increased inflow angle (26 ± 5°) when compared with controls (15 ± 2°). In 5/6 animals undergoing stress diastolic vortices developed later, and in 3/6 animals vortices collapsed earlier with significantly smaller cross-sectional area during diastole. The vorticity index was not affected. Under the stress condition direct flow (% ejection within the next heart beat) increased from 43 ± 6% to 53 ± 8%. 4D MRI blood flow acquisition and analysis are feasible in pig hearts under dobutamine-induced stress. Flow patterns characterized by high blood velocity and antero-septally oriented diastolic inflow as well as decreased ventricular volumes are unfavourable conditions for diastolic vortex development under pharmacological stress, and cardiac output is increased by a rise in heart rate and directly ejected left ventricular blood volume.


Assuntos
Circulação Coronária/efeitos dos fármacos , Dobutamina/farmacologia , Ventrículos do Coração/efeitos dos fármacos , Descanso , Estresse Fisiológico/efeitos dos fármacos , Animais , Diástole/efeitos dos fármacos , Imageamento Tridimensional , Valva Mitral/efeitos dos fármacos , Valva Mitral/fisiologia , Suínos
14.
NMR Biomed ; 31(12): e4008, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30264445

RESUMO

Intravoxel incoherent motion (IVIM) imaging of diffusion and perfusion parameters in the brain using parallel imaging suffers from local noise amplification. To address the issue, signal correlations in space and along the diffusion encoding dimension are exploited jointly using a constrained image reconstruction approach. IVIM imaging was performed on a clinical 3 T MR system with diffusion weighting along six gradient directions and 16 b-values encoded per direction across a range of 0-900 s/mm2 . Data were collected in 11 subjects, retrospectively undersampled in k-space with net factors ranging from 2 to 6 and reconstructed using CG-SENSE and the proposed k-b PCA approach. Results of k-b PCA and CG-SENSE from retrospectively undersampled data were compared with those from the fully sampled reference. In addition, prospective single-shot k-b undersampling was implemented and data were acquired in five additional volunteers. IVIM parameter maps were derived using a segmented least-squares method. The proposed k-b PCA method outperformed CG-SENSE in terms of reconstruction errors for effective undersampling factors of 3 and beyond. Undersampling artifacts were effectively removed with k-b PCA up to sixfold undersampling. At net sixfold undersampling, relative errors (compared with the fully sampled reference) of image magnitude and IVIM parameters (D, f and D* ) were (median ± interquartile range): 3.5 ± 3.7 versus 25.3 ± 25.8%, 2.7 ± 3.6 versus 14.2 ± 20.4%, 15.1 ± 26.1 versus 96.6 ± 67.4% and 14.8 ± 26.6 versus 100 ± 195.1% for k-b PCA versus CG-SENSE, respectively. Acquisition with sixfold prospective undersampling yielded average IVIM parameters in the brain of 0.79 ± 0.18 × 10-3  mm2 /s for D, 7.35 ± 7.27% for f and 7.11 ± 2.39 × 10-3  mm2 /s for D* . Constrained reconstruction using k-b PCA improves IVIM parameter mapping from undersampled data when compared with CG-SENSE reconstruction. Prospectively undersampled single-shot echo planar imaging acquisition was successfully employed using k-b PCA, demonstrating a reduction of image artifacts and noise relative to parallel imaging.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Movimento (Física) , Análise de Componente Principal , Adulto , Feminino , Humanos , Masculino
15.
Magn Reson Med ; 79(4): 2265-2276, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28833410

RESUMO

PURPOSE: To directly compare in vivo versus postmortem second-order motion-compensated spin-echo diffusion tensor imaging of the porcine heart. METHODS: Second-order motion-compensated spin-echo cardiac diffusion tensor imaging was performed during systolic contraction in vivo and repeated upon cardiac arrest by bariumchloride without repositioning of the study animal or replaning of imaging slices. In vivo and postmortem reproducibility was assessed by repeat measurements. Comparison of helix, transverse, and sheet (E2A) angulation as well as mean diffusivity and fractional anisotropy was performed. RESULTS: Intraclass correlation coefficients for repeated measurements (postmortem/in vivo) were 0.95/0.96 for helix, 0.70/0.66 for transverse, and 0.79/0.72 for E2A angulation; 0.83/0.72 for mean diffusivity; and 0.78/0.76 for fractional anisotropy. The corresponding 95% levels of agreement across the left ventricle were: helix 14 to 18°/12 to 15°, transverse 9 to 10°/10 to 11°, E2A 15 to 20°/16 to 18°. The 95% levels of agreement across the left ventricle for the comparison of postmortem versus in vivo were 20 to 22° for helix, 13 to 19° for transverse, and 24 to 31° for E2A angulation. CONCLUSIONS: Parameters derived from in vivo second-order motion-compensated spin-echo diffusion tensor imaging agreed well with postmortem imaging, indicating sufficient suppression of motion-induced signal distortions of in vivo cardiac diffusion tensor imaging. Magn Reson Med 79:2265-2276, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Tensor de Difusão/métodos , Ventrículos do Coração/diagnóstico por imagem , Coração/diagnóstico por imagem , Miocárdio/patologia , Animais , Anisotropia , Compostos de Bário , Cloretos , Eletrocardiografia , Feminino , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Reprodutibilidade dos Testes , Suínos
16.
J Cardiovasc Magn Reson ; 19(1): 85, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29110717

RESUMO

BACKGROUND: Intravoxel incoherent motion (IVIM) imaging of diffusion and perfusion in the heart suffers from high parameter estimation error. The purpose of this work is to improve cardiac IVIM parameter mapping using Bayesian inference. METHODS: A second-order motion-compensated diffusion weighted spin-echo sequence with navigator-based slice tracking was implemented to collect cardiac IVIM data in early systole in eight healthy subjects on a clinical 1.5 T CMR system. IVIM data were encoded along six gradient optimized directions with b-values of 0-300 s/mm2. Subjects were scanned twice in two scan sessions one week apart to assess intra-subject reproducibility. Bayesian shrinkage prior (BSP) inference was implemented to determine IVIM parameters (diffusion D, perfusion fraction F and pseudo-diffusion D*). Results were compared to least-squares (LSQ) parameter estimation. Signal-to-noise ratio (SNR) requirements for a given fitting error were assessed for the two methods using simulated data. Reproducibility analysis of parameter estimation in-vivo using BSP and LSQ was performed. RESULTS: BSP resulted in reduced SNR requirements when compared to LSQ in simulations. In-vivo, BSP analysis yielded IVIM parameter maps with smaller intra-myocardial variability and higher estimation certainty relative to LSQ. Mean IVIM parameter estimates in eight healthy subjects were (LSQ/BSP): 1.63 ± 0.28/1.51 ± 0.14·10-3 mm2/s for D, 13.13 ± 19.81/13.11 ± 5.95% for F and 201.45 ± 313.23/13.11 ± 14.53·10-3 mm2/s for D ∗. Parameter variation across all volunteers and measurements was lower with BSP compared to LSQ (coefficient of variation BSP vs. LSQ: 9% vs. 17% for D, 45% vs. 151% for F and 111% vs. 155% for D ∗). In addition, reproducibility of the IVIM parameter estimates was higher with BSP compared to LSQ (Bland-Altman coefficients of repeatability BSP vs. LSQ: 0.21 vs. 0.26·10-3 mm2/s for D, 5.55 vs. 6.91% for F and 15.06 vs. 422.80·10-3 mm2/s for D*). CONCLUSION: Robust free-breathing cardiac IVIM data acquisition in early systole is possible with the proposed method. BSP analysis yields improved IVIM parameter maps relative to conventional LSQ fitting with fewer outliers, improved estimation certainty and higher reproducibility. IVIM parameter mapping holds promise for myocardial perfusion measurements without the need for contrast agents.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Modelos Cardiovasculares , Contração Miocárdica , Modelagem Computacional Específica para o Paciente , Adulto , Algoritmos , Artefatos , Teorema de Bayes , Feminino , Voluntários Saudáveis , Coração/fisiologia , Frequência Cardíaca , Humanos , Análise dos Mínimos Quadrados , Masculino , Movimento , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Adulto Jovem
17.
J Cardiovasc Magn Reson ; 19(1): 46, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637508

RESUMO

BACKGROUND: A velocity-selective binomial excitation scheme for myocardial first-pass perfusion measurements with hyperpolarized 13C substrates, which preserves bolus magnetization inside the blood pool, is presented. The proposed method is evaluated against gadolinium-enhanced 1H measurements in-vivo. METHODS: The proposed excitation with an echo-planar imaging readout was implemented on a clinical CMR system. Dynamic myocardial stress perfusion images were acquired in six healthy pigs after bolus injection of hyperpolarized 13C urea with the velocity-selective vs. conventional excitation, as well as standard 1H gadolinium-enhanced images. Signal-to-noise, contrast-to-noise (CNR) and homogeneity of semi-quantitative perfusion measures were compared between methods based on first-pass signal-intensity time curves extracted from a mid-ventricular slice. Diagnostic feasibility is demonstrated in a case of septal infarction. RESULTS: Velocity-selective excitation provides over three-fold reduction in blood pool signal with a two-fold increase in myocardial CNR. Extracted first-pass perfusion curves reveal a significantly reduced variability of semi-quantitative first-pass perfusion measures (12-20%) for velocity-selective excitation compared to conventional excitation (28-93%), comparable to that of reference 1H gadolinium data (9-15%). Overall image quality appears comparable between the velocity-selective hyperpolarized and gadolinium-enhanced imaging. CONCLUSION: The feasibility of hyperpolarized 13C first-pass perfusion CMR has been demonstrated in swine. Comparison with reference 1H gadolinium data revealed sufficient data quality and indicates the potential of hyperpolarized perfusion imaging for human applications.


Assuntos
Isótopos de Carbono/administração & dosagem , Meios de Contraste/administração & dosagem , Circulação Coronária , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Ureia/administração & dosagem , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Imageamento por Ressonância Magnética/instrumentação , Infarto do Miocárdio/fisiopatologia , Imagem de Perfusão do Miocárdio/instrumentação , Imagens de Fantasmas , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Sus scrofa
18.
Circ Cardiovasc Imaging ; 9(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27729361

RESUMO

BACKGROUND: The objective of this study is to assess the dynamic alterations of myocardial microstructure and strain between diastole and systole in patients with dilated cardiomyopathy relative to healthy controls using the magnetic resonance diffusion tensor imaging, myocardial tagging, and biomechanical modeling. METHODS AND RESULTS: Dual heart-phase diffusion tensor imaging was successfully performed in 9 patients and 9 controls. Tagging data were acquired for the diffusion tensor strain correction and cardiac motion analysis. Mean diffusivity, fractional anisotropy, and myocyte aggregate orientations were compared between both cohorts. Cardiac function was assessed by left ventricular ejection fraction, torsion, and strain. Computational modeling was used to study the impact of cardiac shape on fiber reorientation and how fiber orientations affect strain. In patients with dilated cardiomyopathy, a more longitudinal orientation of diastolic myofiber aggregates was measured compared with controls. Although a significant steepening of helix angles (HAs) during contraction was found in the controls, consistent change in HAs during contraction was absent in patients. Left ventricular ejection fraction, cardiac torsion, and strain were significantly lower in the patients compared with controls. Computational modeling revealed that the dilated heart results in reduced HA changes compared with a normal heart. Reduced torsion was found to be exacerbated by steeper HAs. CONCLUSIONS: Diffusion tensor imaging revealed reduced reorientation of myofiber aggregates during cardiac contraction in patients with dilated cardiomyopathy relative to controls. Left ventricular remodeling seems to be an important factor in the changes to myocyte orientation. Steeper HAs are coupled with a worsening in strain and torsion. Overall, the findings provide new insights into the structural alterations in patients with dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Contração Miocárdica , Miocárdio/patologia , Miofibrilas/patologia , Função Ventricular Esquerda , Remodelação Ventricular , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Estudos de Casos e Controles , Simulação por Computador , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Valor Preditivo dos Testes , Volume Sistólico , Torção Mecânica
19.
Magn Reson Med ; 76(3): 873-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26332610

RESUMO

PURPOSE: Sensitivity encoding (SENSE) reconstruction of multiband echo planar imaging (EPI) may cause artifacts when simultaneously excited slices require different phase correction to remove the EPI-specific ghost shifted by half of the matrix size (N). We propose a simplified solution of this problem that combines SENSE unfolding with the EPI phase correction in the image domain. THEORY AND METHODS: Slice-dependent phase correction was included in equations linking folded slice images reconstructed separately from even and odd echoes of all receivers with the true images of each slice. Compared with the previously proposed combination of ghost suppression with SENSE based on a direct image fit to echo data, our method reduces the problem complexity by N(2) /4. It was applied to reconstruct images of phantoms and human brain. RESULTS: The proposed method tolerates high differences of phase correction between slices, which may result, e.g., from anisotropic gradient delay. It suppresses artifacts better than standard SENSE even when the latter is repeated with the ghost correction targeting each of the slices and works significantly faster than the direct fit version of ghost-correcting SENSE. CONCLUSION: With the proposed modification SENSE allows a rapid separation of slices simultaneously acquired with EPI even when the phase correction needed for each slice is different. Magn Reson Med 76:873-879, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Artefatos , Encéfalo/anatomia & histologia , Imagem Ecoplanar/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Magn Reson Med ; 75(4): 1669-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26033456

RESUMO

PURPOSE: Myocardial microstructure has been challenging to probe in vivo. Spin echo-based diffusion-weighted sequences allow for single-shot acquisitions but are highly sensitive to cardiac motion. In this study, the use of second-order motion-compensated diffusion encoding was compared with first-order motion-compensated diffusion-weighted imaging during systolic contraction of the heart. METHODS: First- and second-order motion-compensated diffusion encoding gradients were incorporated into a triggered single-shot spin echo sequence. The effect of contractile motion on the apparent diffusion coefficients and tensor orientations was investigated in vivo from basal to apical level of the heart. RESULTS: Second-order motion compensation was found to increase the range of systolic trigger delays from 30%-55% to 15%-77% peak systole at the apex and from 25%-50% to 15%-79% peak systole at the base. Diffusion tensor analysis yielded more physiological transmural distributions when using second-order motion-compensated diffusion tensor imaging. CONCLUSION: Higher-order motion-compensated diffusion encoding decreases the sensitivity to cardiac motion, thereby enabling cardiac DTI over a wider range of time points during systolic contraction of the heart.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Coração/diagnóstico por imagem , Processamento de Sinais Assistido por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...