Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298206

RESUMO

Oncolytic viruses (OVs) are promising therapeutics for tumors with a poor prognosis. An OV based on herpes simplex virus type 1 (oHSV-1), talimogene laherparepvec (T-VEC), has been recently approved by the Food and Drug Administration (FDA) and by the European Medicines Agency (EMA) for the treatment of unresectable melanoma. T-VEC, like most OVs, is administered via intratumoral injection, underlining the unresolved problem of the systemic delivery of the oncolytic agent for the treatment of metastases and deep-seated tumors. To address this drawback, cells with a tropism for tumors can be loaded ex vivo with OVs and used as carriers for systemic oncolytic virotherapy. Here, we evaluated human monocytes as carrier cells for a prototype oHSV-1 with a similar genetic backbone as T-VEC. Many tumors specifically recruit monocytes from the bloodstream, and autologous monocytes can be obtained from peripheral blood. We demonstrate here that oHSV-1-loaded primary human monocytes migrated in vitro towards epithelial cancer cells of different origin. Moreover, human monocytic leukemia cells selectively delivered oHSV-1 to human head-and-neck xenograft tumors grown on the chorioallantoic membrane (CAM) of fertilized chicken eggs after intravascular injection. Thus, our work shows that monocytes are promising carriers for the delivery of oHSV-1s in vivo, deserving further investigation in animal models.


Assuntos
Herpesvirus Humano 1 , Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Embrião de Galinha , Animais , Humanos , Herpesvirus Humano 1/genética , Melanoma/terapia , Galinhas , Monócitos , Membrana Corioalantoide , Vírus Oncolíticos/genética
2.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198527

RESUMO

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , Peptídeos , Amiloide/química , Antibacterianos/farmacologia , Hemoglobinas
3.
mBio ; 13(3): e0043522, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420480

RESUMO

Cellular lipid metabolism plays a pivotal role in human cytomegalovirus (HCMV) infection, as increased lipogenesis in HCMV-infected cells favors the envelopment of newly synthesized viral particles. As all cells are equipped with restriction factors (RFs) able to exert a protective effect against invading pathogens, we asked whether a similar defense mechanism would also be in place to preserve the metabolic compartment from HCMV infection. Here, we show that gamma interferon (IFN-γ)-inducible protein 16 (IFI16), an RF able to block HCMV DNA synthesis, can also counteract HCMV-mediated metabolic reprogramming in infected primary human foreskin fibroblasts (HFFs), thereby limiting virion infectivity. Specifically, we find that IFI16 downregulates the transcriptional activation of the glucose transporter 4 (GLUT4) through cooperation with the carbohydrate-response element-binding protein (ChREBP), thereby reducing HCMV-induced transcription of lipogenic enzymes. The resulting decrease in glucose uptake and consumption leads to diminished lipid synthesis, which ultimately curbs the de novo formation of enveloped viral particles in infected HFFs. Consistently, untargeted lipidomic analysis shows enhanced cholesteryl ester levels in IFI16 KO versus wild-type (WT) HFFs. Overall, our data unveil a new role of IFI16 in the regulation of glucose and lipid metabolism upon HCMV replication and uncover new potential targets for the development of novel antiviral therapies. IMPORTANCE Human cytomegalovirus (HCMV) gathers all the substrates and enzymes necessary for the assembly of new virions from its host cell. For instance, HCMV is known to induce cellular metabolism of infected cells to favor virion assembly. Cells are, however, equipped with a first-line defense represented by restriction factors (RFs), which after sensing viral DNA can trigger innate and adaptive responses, thereby blocking HCMV replication. One such RF is IFN-γ-inducible protein 16 (IFI16), which we have shown to downregulate viral replication in human fibroblasts. Thus, we asked whether IFI16 would also play a role in preserving cellular metabolism upon HCMV infection. Our findings highlight an unprecedented role of IFI16 in opposing the metabolic changes elicited by HCMV, thus revealing new promising targets for antiviral therapy.


Assuntos
Reprogramação Celular , Infecções por Citomegalovirus , Citomegalovirus , Proteínas Nucleares , Fosfoproteínas , Citomegalovirus/fisiologia , DNA Viral/genética , Fibroblastos , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Replicação Viral
4.
Viruses ; 13(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578265

RESUMO

Human cytomegalovirus (HCMV) uses two major ways for virus dissemination: infection by cell-free virus and direct cell-to-cell spread. Neutralizing antibodies can efficiently inhibit infection by cell-free virus but mostly fail to prevent cell-to-cell transmission. Here, we show that the 'molecular tweezer' CLR01, a broad-spectrum antiviral agent, is not only highly active against infection with cell-free virus but most remarkably inhibits antibody-resistant direct cell-to-cell spread of HCMV. The inhibition of cell-to-cell spread by CLR01 was not limited to HCMV but was also shown for the alphaherpesviruses herpes simplex viruses 1 and 2 (HSV-1, -2). CLR01 is a rapid acting small molecule that inhibits HCMV entry at the attachment and penetration steps. Electron microscopy of extracellular virus particles indicated damage of the viral envelope by CLR01, which likely impairs the infectivity of virus particles. The rapid inactivation of viral particles by CLR01, the viral envelope as the main target, and the inhibition of virus entry at different stages are presumably the key to inhibition of cell-free virus infection and cell-to-cell spread by CLR01. Importance: While cell-free spread enables the human cytomegalovirus (HCMV) and other herpesviruses to transmit between hosts, direct cell-to-cell spread is thought to be more relevant for in vivo dissemination within infected tissues. Cell-to-cell spread is resistant to neutralizing antibodies, thus contributing to the maintenance of virus infection and virus dissemination in the presence of an intact immune system. Therefore, it would be therapeutically interesting to target this mode of spread in order to treat severe HCMV infections and to prevent dissemination of virus within the infected host. The molecular tweezer CLR01 exhibits broad-spectrum antiviral activity against a number of enveloped viruses and efficiently blocks antibody-resistant cell-to-cell spread of HCMV, thus representing a novel class of small molecules with promising antiviral activity.


Assuntos
Anticorpos Neutralizantes/imunologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Comunicação Celular/efeitos dos fármacos , Citomegalovirus/efeitos dos fármacos , Organofosfatos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Comunicação Celular/imunologia , Linhagem Celular , Citomegalovirus/imunologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Prepúcio do Pênis/citologia , Humanos , Masculino
5.
mBio ; 12(3)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947752

RESUMO

Stress and virus infection regulate lipid metabolism. Human cytomegalovirus (HCMV) infection induces fatty acid (FA) elongation and increases the abundance of lipids with very-long-chain FA (VLCFA) tails. While reprogramming of metabolism can be stress related, the role of stress in HCMV reprogramming of lipid metabolism is poorly understood. In this study, we engineered cells to knock out protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) in the ER stress pathway and measured lipid changes using lipidomics to determine if PERK is needed for lipid changes associated with HCMV infection. In HCMV-infected cells, PERK promotes increases in the levels of phospholipids with saturated FA (SFA) and monounsaturated FA (MUFA) VLCFA tails. Further, PERK enhances FA elongase 7 (ELOVL7) protein levels, which elongates SFA and MUFA VLCFAs. Additionally, we found that increases in the elongation of polyunsaturated fatty acids (PUFAs) associated with HCMV infection were independent of PERK and that lipids with PUFA tails accumulated in HCMV-infected PERK knockout cells. Additionally, the protein levels of ELOVL5, which elongates PUFAs, are increased by HCMV infection through a PERK-independent mechanism. These observations show that PERK differentially regulates ELOVL7 and ELOVL5, creating a balance between the synthesis of lipids with SFA/MUFA tails and PUFA tails. Additionally, we found that PERK was necessary for virus replication and the infectivity of released viral progeny. Overall, our findings indicate that PERK-and, more broadly, ER stress-may be necessary for the membrane biogenesis needed to generate infectious HCMV virions.IMPORTANCE HCMV is a common herpesvirus that establishes lifelong persistent infections. While infection is asymptomatic in most people, HCMV causes life-threatening illnesses in immunocompromised people, including transplant recipients and cancer patients. Additionally, HCMV infection is a leading cause of congenital disabilities. HCMV replication relies on lipid synthesis. Here, we demonstrated that the ER stress mediator PERK controls FA elongation and the cellular abundance of several types of lipids following HCMV infection. Specifically, PERK promotes FA elongase 7 synthesis and phospholipids with saturated/monounsaturated very-long-chain FA tails. Overall, our study shows that PERK is an essential host factor that supports HCMV replication and promotes lipidome changes caused by HCMV infection.


Assuntos
Citomegalovirus/genética , Citomegalovirus/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Interações entre Hospedeiro e Microrganismos , Metabolismo dos Lipídeos , Células Cultivadas , Estresse do Retículo Endoplasmático , Fibroblastos/virologia , Humanos , Replicação Viral/fisiologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
6.
Methods Mol Biol ; 2244: 265-289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33555592

RESUMO

The generation and release of mature virions from human cytomegalovirus (HCMV) infected cells is a multistep process, involving a profound reorganization of cellular structures and various stages of virus particle morphogenesis in different cellular compartments. Although the general steps of HCMV morphogenesis are known, it has become clear that the detailed molecular mechanisms are complex and dependent on various viral factors and cellular pathways. The lack of a full understanding of HCMV virion morphogenesis emphasizes the need of imaging techniques to visualize the different stages of virion assembly, such as electron microscopy. Here, we describe various electron microscopy techniques and the methodology of high-pressure freezing and freeze substitution for sample preparation to visualize HCMV morphogenesis. These methods are used in our laboratory in combination with a thorough quantification to characterize phenotypic alterations and to identify the function of viral and cellular proteins for the various morphogenesis stages.


Assuntos
Infecções por Citomegalovirus/diagnóstico por imagem , Citomegalovirus/crescimento & desenvolvimento , Microscopia Eletrônica/métodos , Linhagem Celular , Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/virologia , Citoplasma/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Morfogênese/fisiologia , Transporte Proteico/fisiologia , Proteínas Virais/metabolismo , Vírion/metabolismo , Montagem de Vírus/fisiologia , Replicação Viral/fisiologia
7.
Cell Microbiol ; 23(2): e13280, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33073426

RESUMO

Detailed analysis of secondary envelopment of the herpesvirus human cytomegalovirus (HCMV) by transmission electron microscopy (TEM) is crucial for understanding the formation of infectious virions. Here, we present a convolutional neural network (CNN) that automatically recognises cytoplasmic capsids and distinguishes between three HCMV capsid envelopment stages in TEM images. 315 TEM images containing 2,610 expert-labelled capsids of the three classes were available for CNN training. To overcome the limitation of small training datasets and thus poor CNN performance, we used a deep learning method, the generative adversarial network (GAN), to automatically increase our labelled training dataset with 500 synthetic images and thus to 9,192 labelled capsids. The synthetic TEM images were added to the ground truth dataset to train the Faster R-CNN deep learning-based object detector. Training with 315 ground truth images yielded an average precision (AP) of 53.81% for detection, whereas the addition of 500 synthetic training images increased the AP to 76.48%. This shows that generation and additional use of synthetic labelled images for detector training is an inexpensive way to improve detector performance. This work combines the gold standard of secondary envelopment research with state-of-the-art deep learning technology to speed up automatic image analysis even when large labelled training datasets are not available.


Assuntos
Capsídeo/ultraestrutura , Citomegalovirus/ultraestrutura , Aprendizado Profundo , Infecções por Herpesviridae/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Vírion/ultraestrutura , Algoritmos , Citomegalovirus/metabolismo , Infecções por Herpesviridae/virologia , Humanos , Aprendizado de Máquina , Microscopia Eletrônica de Transmissão , Redes Neurais de Computação , Vírion/metabolismo
8.
J Am Chem Soc ; 142(40): 17024-17038, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32926779

RESUMO

Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Organofosfatos/farmacologia , Proteínas do Envelope Viral/efeitos dos fármacos , Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Amiloide/antagonistas & inibidores , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Arginina/química , Betacoronavirus/efeitos dos fármacos , Hidrocarbonetos Aromáticos com Pontes/química , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Lipídeos/química , Lisina/química , Espectroscopia de Ressonância Magnética , Organofosfatos/química , SARS-CoV-2 , Proteínas Secretadas pela Vesícula Seminal/química , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo , Zika virus/efeitos dos fármacos
9.
Front Microbiol ; 11: 657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351485
10.
mBio ; 10(6)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822584

RESUMO

Human cytomegalovirus (HCMV) encodes an endoplasmic reticulum (ER)-resident glycoprotein, UL148, which activates the unfolded protein response (UPR) but is fully dispensable for viral replication in cultured cells. Hence, its previously ascribed roles in immune evasion and modulation of viral cell tropism are hypothesized to cause ER stress. Here, we show that UL148 is necessary and sufficient to drive the formation of prominent ER-derived structures that on average occupy 5% of the infected cell cytoplasm. The structures are sites where UL148 coalesces with cellular proteins involved in ER quality control, such as HRD1 and EDEM1. Electron microscopy revealed that cells infected with wild-type but not UL148-null HCMV show prominent accumulations of densely packed ruffled ER membranes which connect to distended cisternae of smooth and partially rough ER. During ectopic expression of UL148-green fluorescent protein (GFP) fusion protein, punctate signals traffic to accumulate at conspicuous structures. The structures exhibit poor recovery of fluorescence after photobleaching, which suggests that their contents are poorly mobile and do not efficiently exchange with the rest of the ER. Small-molecule blockade of the integrated stress response (ISR) prevents the formation of puncta, leading to a uniform reticular fluorescent signal. Accordingly, ISR inhibition during HCMV infection abolishes the coalescence of UL148 and HRD1 into discrete structures, which argues that UL148 requires the ISR to cause ER reorganization. Given that UL148 stabilizes immature forms of a receptor binding subunit for a viral envelope glycoprotein complex important for HCMV infectivity, our results imply that stress-dependent ER remodeling contributes to viral cell tropism.IMPORTANCE Perturbations to endoplasmic reticulum (ER) morphology occur during infection with various intracellular pathogens and in certain genetic disorders. We identify that a human cytomegalovirus (HCMV) gene product, UL148, profoundly reorganizes the ER during infection and is sufficient to do so when expressed on its own. Our results reveal that UL148-dependent reorganization of the ER is a prominent feature of HCMV-infected cells. Moreover, we find that this example of virally induced organelle remodeling requires the integrated stress response (ISR), a stress adaptation pathway that contributes to a number of disease states. Since ER reorganization accompanies roles of UL148 in modulation of HCMV cell tropism and in evasion of antiviral immune responses, our results may have implications for understanding the mechanisms involved. Furthermore, our findings provide a basis to utilize UL148 as a tool to investigate organelle responses to stress and to identify novel drugs targeting the ISR.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Evasão da Resposta Imune/fisiologia , Proteínas de Membrana/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Proteínas do Envelope Viral/metabolismo , Tropismo Viral/fisiologia , Replicação Viral/fisiologia
11.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996102

RESUMO

Human cytomegalovirus (HCMV) secondary envelopment requires the viral tegument protein pUL71. The lack of pUL71 results in a complex ultrastructural phenotype with increased numbers of viral capsids undergoing envelopment at the cytoplasmic virus assembly complex. Here, we report a role of the pUL71 C terminus in secondary envelopment. Mutant viruses expressing C-terminally truncated pUL71 (TB71del327-361 and TB71del348-351) exhibited an impaired secondary envelopment in transmission electron microscopy (TEM) studies. Further mutational analyses of the C terminus revealed a tetralysine motif whose mutation (TB71mutK348-351A) resulted in an envelopment defect that was undistinguishable from the defect caused by truncation of the pUL71 C terminus. Interestingly, not all morphological alterations that define the ultrastructural phenotype of a TB71stop virus were found in cells infected with the C-terminally mutated viruses. This suggests that pUL71 provides additional functions that modulate HCMV morphogenesis and are harbored elsewhere in pUL71. This is also reflected by an intermediate growth defect of the C-terminally mutated viruses compared to the growth of the TB71stop virus. Electron tomography and three-dimensional visualization of different stages of secondary envelopment in TB71mutK348-351A-infected cells showed unambiguously the formation of a bud neck. Furthermore, we provide evidence for progressive tegument formation linked to advancing grades of capsid envelopment, suggesting that tegumentation and envelopment are intertwined processes. Altogether, we identified the importance of the pUL71 C terminus and, specifically, of a positively charged tetralysine motif for HCMV secondary envelopment.IMPORTANCE Human cytomegalovirus (HCMV) is an important human pathogen that causes severe symptoms, especially in immunocompromised hosts. Furthermore, congenital HCMV infection is the leading viral cause of severe birth defects. Development of antiviral drugs to prevent the production of infectious virus progeny is challenging due to a complex and multistep virion morphogenesis. The mechanism of secondary envelopment is still not fully understood; nevertheless, it represents a potential target for antiviral drugs. Our identification of the role of a positively charged motif in the pUL71 C terminus for efficient HCMV secondary envelopment underlines the importance of pUL71 and, especially, its C terminus for this process. It furthermore shows how cell-associated spread and virion release depend on secondary envelopment. Ultrastructural analyses of different stages of envelopment contribute to a better understanding of the mechanisms underlying the process of secondary envelopment. This may bring us closer to the development of novel concepts to treat HCMV infections.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/genética , Citomegalovirus/fisiologia , Polilisina , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Linhagem Celular , Citomegalovirus/ultraestrutura , Citoplasma/virologia , Humanos , Mutação , Alinhamento de Sequência , Proteínas Virais/metabolismo , Montagem de Vírus
12.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626669

RESUMO

Human cytomegalovirus (HCMV) is the most frequent viral cause of congenital infections that can lead to severe birth defects. Although HCMV is frequently detected in semen and thus is potentially sexually transmitted, the role of semen in HCMV transmission is largely unclear. Here we describe that human seminal plasma (SP; the cell-free supernatant of semen) inhibits HCMV infection. The inhibition of HCMV infection was dose dependent and effective for different cell types, virus strains, and semen donors. This inhibitory effect was specific for HCMV, as herpes simplex virus 2 (HSV-2) and human immunodeficiency virus type 1 (HIV-1) infections were enhanced by SP. Mechanistically, SP inhibited infection by interfering with the attachment of virions to cells most likely via an interaction with the trimeric glycoprotein complex gH/gL/gO. Together, our findings suggest that semen contains a factor that potentially limits sexual transmission of HCMV.IMPORTANCE The role of semen in sexual transmission of human cytomegalovirus (HCMV) is currently unclear. This is surprising, as HCMV is frequently detected in this body fluid and infection is of high danger for neonates and pregnant women. In this study, we found that seminal plasma (SP) dose dependently inhibited HCMV infection. The infection inhibition was specific for HCMV, as other viruses, such as human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus 2 (HSV-2), were not inhibited by SP. SP must contain a soluble, heat-resistant factor that limits attachment of HCMV particles to cells, probably by interaction with the trimeric glycoprotein complex gH/gL/gO. This novel virus-host interaction could possibly limit transmission of HCMV via semen during sexual intercourse.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Sêmen/imunologia , Sêmen/virologia , Células Cultivadas , Infecções por Citomegalovirus/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Fibroblastos/imunologia , Fibroblastos/virologia , Humanos , Vírion/imunologia
13.
Nat Commun ; 9(1): 2207, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880824

RESUMO

Zika virus (ZIKV) causes severe birth defects and can be transmitted via sexual intercourse. Semen from ZIKV-infected individuals contains high viral loads and may therefore serve as an important vector for virus transmission. Here we analyze the effect of semen on ZIKV infection of cells and tissues derived from the anogenital region. ZIKV replicates in all analyzed cell lines, primary cells, and endometrial or vaginal tissues. However, in the presence of semen, infection by ZIKV and other flaviviruses is potently inhibited. We show that semen prevents ZIKV attachment to target cells, and that an extracellular vesicle preparation from semen is responsible for this anti-ZIKV activity. Our findings suggest that ZIKV transmission is limited by semen. As such, semen appears to serve as a protector against sexual ZIKV transmission, despite the availability of highly susceptible cells in the anogenital tract and high viral loads in this bodily fluid.


Assuntos
Sêmen/imunologia , Doenças Virais Sexualmente Transmissíveis/transmissão , Ligação Viral , Infecção por Zika virus/transmissão , Zika virus/fisiologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Vesículas Extracelulares/imunologia , Feminino , Fibroblastos , Genitália/citologia , Voluntários Saudáveis , Humanos , Concentração Inibidora 50 , Masculino , Cultura Primária de Células , RNA Viral/isolamento & purificação , Sêmen/citologia , Sêmen/virologia , Doenças Virais Sexualmente Transmissíveis/virologia , Células Vero , Carga Viral/imunologia , Replicação Viral/imunologia , Zika virus/isolamento & purificação , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
14.
Antiviral Res ; 152: 26-35, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29428508

RESUMO

Ebola (EBOV) and Zika viruses (ZIKV) are responsible for recent global health threats. As no preventive vaccines or antiviral drugs against these two re-emerging pathogens are available, we evaluated whether the molecular tweezer CLR01 may inhibit EBOV and ZIKV infection. This small molecule has previously been shown to inactivate HIV-1 and herpes viruses through a selective interaction with lipid-raft-rich regions in the viral envelope, which results in membrane disruption and loss of infectivity. We found that CLR01 indeed blocked infection of EBOV and ZIKV in a dose-dependent manner. The tweezer inhibited infection of epidemic ZIKV strains in cells derived from the anogenital tract and the central nervous system, and remained antivirally active in the presence of semen, saliva, urine and cerebrospinal fluid. Our findings show that CLR01 is a broad-spectrum inhibitor of enveloped viruses with prospects as a preventative microbicide or antiviral agent.


Assuntos
Antivirais/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Ebolavirus/efeitos dos fármacos , Organofosfatos/farmacologia , Zika virus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Ebolavirus/genética , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Humanos , Células Vero , Replicação Viral/efeitos dos fármacos , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/virologia
15.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263269

RESUMO

The innate immune response plays a pivotal role during human cytomegalovirus (HCMV) primary infection. Indeed, HCMV infection of primary fibroblasts rapidly triggers strong induction of type I interferons (IFN-I), accompanied by proinflammatory cytokine release. Here, we show that primary human foreskin fibroblasts (HFFs) infected with a mutant HCMV TB40/E strain unable to express UL83-encoded pp65 (v65Stop) produce significantly higher IFN-ß levels than HFFs infected with the wild-type TB40/E strain or the pp65 revertant (v65Rev), suggesting that the tegument protein pp65 may dampen IFN-ß production. To clarify the mechanisms through which pp65 inhibits IFN-ß production, we analyzed the activation of the cGAS/STING/IRF3 axis in HFFs infected with either the wild type, the revertant v65Rev, or the pp65-deficient mutant v65Stop. We found that pp65 selectively binds to cGAS and prevents its interaction with STING, thus inactivating the signaling pathway through the cGAS/STING/IRF3 axis. Consistently, addition of exogenous cGAMP to v65Rev-infected cells triggered the production of IFN-ß levels similar to those observed with v65Stop-infected cells, confirming that pp65 inactivation of IFN-ß production occurs at the cGAS level. Notably, within the first 24 h of HCMV infection, STING undergoes proteasome degradation independently of the presence or absence of pp65. Collectively, our data provide mechanistic insights into the interplay between HCMV pp65 and cGAS, leading to subsequent immune evasion by this prominent DNA virus.IMPORTANCE Primary human foreskin fibroblasts (HFFs) produce type I IFN (IFN-I) when infected with HCMV. However, we observed significantly higher IFN-ß levels when HFFs were infected with HCMV that was unable to express UL83-encoded pp65 (v65Stop), suggesting that pp65 (pUL83) may constitute a viral evasion factor. This study demonstrates that the HCMV tegument protein pp65 inhibits IFN-ß production by binding and inactivating cGAS early during infection. In addition, this inhibitory activity specifically targets cGAS, since it can be bypassed via the addition of exogenous cGAMP, even in the presence of pp65. Notably, STING proteasome-mediated degradation was observed in both the presence and absence of pp65. Collectively, our data underscore the important role of the tegument protein pp65 as a critical molecular hub in HCMV's evasion strategy against the innate immune response.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Evasão da Resposta Imune/imunologia , Interferon Tipo I/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Fosfoproteínas/imunologia , Transdução de Sinais/imunologia , Proteínas da Matriz Viral/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Células HEK293 , Humanos , Evasão da Resposta Imune/genética , Imunidade Inata/genética , Interferon Tipo I/genética , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Fosfoproteínas/genética , Ligação Proteica , Transdução de Sinais/genética , Proteínas da Matriz Viral/genética
16.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046458

RESUMO

The human cytomegalovirus (HCMV) tegument protein pUL71 is required for efficient secondary envelopment and accumulates at the Golgi compartment-derived viral assembly complex (vAC) during infection. Analysis of various C-terminally truncated pUL71 proteins fused to enhanced green fluorescent protein (eGFP) identified amino acids 23 to 34 as important determinants for its Golgi complex localization. Sequence analysis and mutational verification revealed the presence of an N-terminal tyrosine-based trafficking motif (YXXΦ) in pUL71. This led us to hypothesize a requirement of the YXXΦ motif for the function of pUL71 in infection. Mutation of both the tyrosine residue and the entire YXXΦ motif resulted in an altered distribution of mutant pUL71 at the plasma membrane and in the cytoplasm during infection. Both YXXΦ mutant viruses exhibited similarly decreased focal growth and reduced virus yields in supernatants. Ultrastructurally, mutant-virus-infected cells exhibited impaired secondary envelopment manifested by accumulations of capsids undergoing an envelopment process. Additionally, clusters of capsid accumulations surrounding the vAC were observed, similar to the ultrastructural phenotype of a UL71-deficient mutant. The importance of endocytosis and thus the YXXΦ motif for targeting pUL71 to the Golgi complex was further demonstrated when clathrin-mediated endocytosis was inhibited either by coexpression of the C-terminal part of cellular AP180 (AP180-C) or by treatment with methyl-ß-cyclodextrin. Both conditions resulted in a plasma membrane accumulation of pUL71. Altogether, these data reveal the presence of a functional N-terminal endocytosis motif that is an important determinant for intracellular localization of pUL71 and that is furthermore required for the function of pUL71 during secondary envelopment of HCMV capsids at the vAC.IMPORTANCE Human cytomegalovirus (HCMV) is the leading cause of birth defects among congenital virus infections and can lead to life-threatening infections in immunocompromised hosts. Current antiviral treatments target viral genome replication and are increasingly overcome by viral mutations. Therefore, identifying new targets for antiviral therapy is important for future development of novel treatment options. A detailed molecular understanding of the complex virus morphogenesis will identify potential viral as well as cellular targets for antiviral intervention. Secondary envelopment is an important viral process through which infectious virus particles are generated and which involves the action of several viral proteins, such as tegument protein pUL71. Targeting of pUL71 to the site of secondary envelopment appears to be crucial for its function during this process and is regulated by utilizing host trafficking mechanisms that are commonly exploited by viral glycoproteins. Thus, intracellular trafficking, if targeted, might present a novel target for antiviral therapy.


Assuntos
Citomegalovirus/fisiologia , Tirosina/química , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Membrana Celular/química , Membrana Celular/fisiologia , Citomegalovirus/genética , Citomegalovirus/crescimento & desenvolvimento , Citoplasma/virologia , Endocitose , Proteínas de Fluorescência Verde , Humanos , Mutação , Transporte Proteico , Tirosina/genética , Proteínas Virais/genética , Montagem de Vírus , Replicação Viral
17.
J Virol ; 90(18): 8238-50, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27384655

RESUMO

UNLABELLED: A key player in the intrinsic resistance against human cytomegalovirus (HCMV) is the interferon-γ-inducible protein 16 (IFI16), which behaves as a viral DNA sensor in the first hours postinfection and as a repressor of viral gene transcription in the later stages. Previous studies on HCMV replication demonstrated that IFI16 binds to the viral protein kinase pUL97, undergoes phosphorylation, and relocalizes to the cytoplasm of infected cells. In this study, we demonstrate that the tegument protein pp65 (pUL83) recruits IFI16 to the promoter of the UL54 gene and downregulates viral replication, as shown by use of the HCMV mutant v65Stop, which lacks pp65 expression. Interestingly, at late time points of HCMV infection, IFI16 is stabilized by its interaction with pp65, which stood in contrast to IFI16 degradation, observed in herpes simplex virus 1 (HSV-1)-infected cells. Moreover, we found that its translocation to the cytoplasm, in addition to pUL97, strictly depends on pp65, as demonstrated with the HCMV mutant RV-VM1, which expresses a form of pp65 unable to translocate into the cytoplasm. Thus, these data reveal a dual role for pp65: during early infection, it modulates IFI16 activity at the promoter of immediate-early and early genes; subsequently, it delocalizes IFI16 from the nucleus into the cytoplasm, thereby stabilizing and protecting it from degradation. Overall, these data identify a novel activity of the pp65/IFI16 interactome involved in the regulation of UL54 gene expression and IFI16 stability during early and late phases of HCMV replication. IMPORTANCE: The DNA sensor IFI16, a member of the PYHIN proteins, restricts HCMV replication by impairing viral DNA synthesis. Using a mutant virus lacking the tegument protein pp65 (v65Stop), we demonstrate that pp65 recruits IFI16 to the early UL54 gene promoter. As a putative counteraction to its restriction activity, pp65 supports the nucleocytoplasmic export of IFI16, which was demonstrated with the viral mutant RV-VM1 expressing a nuclearly retained pp65. These data reveal a dual role of pp65 in IFI16 regulation: in the early phase of HCMV infection, it contributes to viral evasion from IFI16 restriction activity, while at later time points, it promotes the nuclear delocalization of IFI16, thereby stabilizing and protecting it from degradation. In the present work, we further clarify the mechanisms HCMV relies on to overcome intracellular innate immune restriction and provide new insights into the relevance of DNA-sensing restriction factor IFI16 during HCMV infection.


Assuntos
Citomegalovirus/imunologia , Citomegalovirus/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Células Cultivadas , DNA Viral/metabolismo , Humanos , Proteínas Nucleares/química , Fosfoproteínas/química , Regiões Promotoras Genéticas , Ligação Proteica , Estabilidade Proteica , Proteínas da Matriz Viral/química
18.
Elife ; 42015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26284498

RESUMO

Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a 'molecular tweezer' specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils. Moreover, CLR01 abrogates semen-mediated enhancement of viral infection by preventing the formation of virion-amyloid complexes and by directly disrupting the membrane integrity of HIV and other enveloped viruses. We establish that CLR01 acts by binding to the target lysine and arginine residues rather than by a non-specific, colloidal mechanism. CLR01 counteracts both host factors that may be important for HIV transmission and the pathogen itself. These combined anti-amyloid and antiviral activities make CLR01 a promising topical microbicide for blocking infection by HIV and other sexually transmitted viruses.


Assuntos
Amiloide/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Antimetabólitos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Organofosfatos/farmacologia , Sêmen/efeitos dos fármacos , Transmissão de Doença Infecciosa/prevenção & controle , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , Humanos , Masculino , Sêmen/química , Sêmen/virologia
19.
J Virol ; 89(14): 7314-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948747

RESUMO

UNLABELLED: Human cytomegalovirus (HCMV) tegument protein pUL47 is an interaction partner of pUL48 and highly conserved among herpesviruses. It is closely associated with the capsid and has an important function early in infection. Here, we report a specific role of pUL47 in the tegumentation of capsids in the cytoplasm. A newly generated mutant virus (TB-47stop), in which expression of pUL47 is blocked, exhibited a severe impairment in cell-to-cell spread and release of infectivity from infected cells. Ultrastructural analysis of TB-47stop-infected cells clearly showed cytoplasmic accumulations of nonenveloped capsids that were only partially tegumented, indicating that these capsids failed to complete tegumentation. Nevertheless, these accumulations were positive for HCMV inner tegument proteins pp150 and pUL48, suggesting that their attachment to capsids occurs independently of pUL47. Despite these morphological alterations, fully enveloped virus particles were found in the extracellular space and at the viral assembly complex (vAC) of TB-47stop-infected cells, indicating that pUL47 is not essential for the generation of virions. We confirmed findings that incorporation of pUL48 into virions is impaired in the absence of pUL47. Interestingly, pUL47 exhibited a strong nuclear localization in transfected cells, whereas it was found exclusively at the vAC in the context of virus infection. Colocalization of pUL47 and pUL48 at the vAC is consistent with their interaction. We also found a shift to a more nuclear localization of pUL47 when the expression of pUL48 was reduced. Summarizing our results, we hypothesize that pUL48 directs pUL47 to the vAC to promote tegumentation and secondary envelopment of capsids. IMPORTANCE: Generation of infectious HCMV particles requires an organized and multistep process involving the action of several viral and cellular proteins as well as protein-protein interactions. A better understanding of these processes is important for understanding the biology of HCMV and may help to identify targets for antiviral intervention. Here, we identified tegument protein pUL47 to function in tegumentation and proper trafficking of capsids during late phases of infection. Although pUL47 is not essential for the generation and release of infectious virions, its absence led to massive accumulations of partially tegumented capsids at the cell periphery. Detection of pUL48 at these accumulations indicated a pUL47-independent attachment of pUL48 to the capsid. On the other hand, localization of pUL47 to the vAC during infection appeared to be dependent on tegument protein pUL48, which suggests an intricate interplay of these proteins for normal generation of infectious virus progeny.


Assuntos
Capsídeo/metabolismo , Citomegalovirus/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus , Citomegalovirus/genética , Técnicas de Inativação de Genes , Humanos , Ligação Proteica , Proteínas Virais/genética , Liberação de Vírus
20.
Proc Natl Acad Sci U S A ; 110(43): 17510-5, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101496

RESUMO

Upon cell entry, herpesviruses deliver a multitude of premade virion proteins to their hosts. The interplay between these incoming proteins and cell-specific regulatory factors dictates the outcome of infections at the cellular level. Here, we report a unique type of virion-host cell interaction that is essential for the cell cycle and differentiation state-dependent onset of human cytomegalovirus (HCMV) lytic gene expression. The major tegument 150-kDa phosphoprotein (pp150) of HCMV binds to cyclin A2 via a functional RXL/Cy motif resulting in its cyclin A2-dependent phosphorylation. Alanine substitution of the RXL/Cy motif prevents this interaction and allows the virus to fully escape the cyclin-dependent kinase (CDK)-mediated block of immediate early (IE) gene expression in S/G2 phase that normally restricts the onset of the HCMV replication cycle to G0/G1. Furthermore, the cyclin A2-CDK-pp150 axis is also involved in the establishment of HCMV quiescence in NTera2 cells, showing the importance of this molecular switch for differentiation state-dependent regulation of IE gene expression. Consistent with the known nucleocapsid-binding function of pp150, its RXL/Cy-dependent phosphorylation affects gene expression of the parental virion only, suggesting a cis-acting, virus particle-associated mechanism of control. The pp150 homologs of other primate and mammalian CMVs lack an RXL/Cy motif and accordingly even the nearest relative of HCMV, chimpanzee CMV, starts its lytic cycle in a cell cycle-independent manner. Thus, HCMV has evolved a molecular sensor for cyclin A2-CDK activity to restrict its IE gene expression program as a unique level of self-limitation and adaptation to its human host.


Assuntos
Ciclo Celular , Diferenciação Celular , Ciclina A2/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Citomegalovirus/metabolismo , Fosfoproteínas/metabolismo , Proteínas da Matriz Viral/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Ciclina A2/genética , Quinases Ciclina-Dependentes/genética , Citomegalovirus/genética , Citomegalovirus/fisiologia , Citometria de Fluxo , Regulação Viral da Expressão Gênica , Genes Precoces/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Fosfoproteínas/genética , Fosforilação , Ligação Proteica , Proteínas da Matriz Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...