Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 672: 797-804, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38870770

RESUMO

HYPOTHESIS: The complexation of microgels with rigid nanoparticles is an effective way to impart novel properties and functions to the resulting hybrid particles for applications such as in optics, catalysis, or for the stabilization of foams/emulsions. The nanoparticles affect the conformation of the polymer network, both in bulk aqueous environments and when the microgels are adsorbed at a fluid interface, in a non-trivial manner by modulating the microgel size, stiffness and apparent contact angle. EXPERIMENTS: Here, we provide a detailed investigation, using light scattering, in-situ atomic force microscopy and nano-indentation experiments, of the interaction between poly(N-isopropylacrylamide) microgels and hydrophobized silica nanoparticles after mixing in aqueous suspension to shed light on the network reorganization upon nanoparticle incorporation. FINDINGS: The addition of nanoparticles decreases the microgels' bulk swelling and thermal response. When adsorbed at an oil-water interface, a higher ratio of nanoparticles influences the microgel's stiffness as well as their hydrophobic/hydrophilic character by increasing their effective contact angle, consequently modulating the monolayer response upon interfacial compression. Overall, these results provide fundamental understanding on the complex conformation of hybrid microgels in different environments and give inspiration to design new materials where the combination of a soft polymer network and nanoparticles might result in additional functionalities.

2.
Langmuir ; 40(11): 5606-5616, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501265

RESUMO

The motion of partly gold (Au)-coated Janus particles under laser irradiation is caused by self-thermophoresis. Despite numerous studies addressing this topic, the impact of the preparation method and the degree of coverage of the particle with Au on the resulting thermophoretic velocity has not yet been fully understood. A detailed understanding of the most important tuning parameters during the preparation process is crucial to design Janus particles that are optimized for Au coverage to receive a high thermophoretic velocity. In this study, we explore the influence of the fabrication process, which changes the Au cap size, on the resulting self-propulsion behavior of partly Au-coated polystyrene particles (Au-PS). Additionally, the impact of an underlying adhesion chromium layer is investigated. In addition to the most commonly used qualitative SEM and EDX measurements, we propose a novel and fast technique utilizing AFM studies to quantify the cap size. This non-invasive technique can be used to determine both the size and the maximum thickness of the Au cap. The Au cap size was systematically varied in a range between about 36 and 74% by different preparation strategies. Nevertheless, we showed that the differing Au cap sizes of the Janus particles in this range have no obvious effect on the thermophoretic velocity. This is a surprising result since one would expect an effect of the Au cap size due to different solvent flows around the Janus particles and is attributed to an additional torque near the surface of the measuring cell.

3.
Soft Matter ; 20(6): 1333-1346, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38251414

RESUMO

Cellulose, as a naturally abundant and biocompatible material, is still gaining interest due to its high potential for functionalization. This makes cellulose a promising candidate for replacing plastics. Understanding how cellulose interacts with various additives is crucial for creating composite materials with diverse properties, as it is the case for plastics. In addition, the mechanical properties of the composite materials are assumed to be related to the mobility of the additives against the cellulose. Using a well-defined cellulose model surface (CMS), we aim to understand the adsorption and desorption of two polymeric particles (core-shell particles and microgels) to/from the cellulose surface. The nanomechanics of particles and CMS are quantified by indentation measurements with an atomic force microscope (AFM). AFM topography measurements quantified particle adsorption and desorption on the CMS, while peak force AFM measurements determined the force needed to move individual particles. Both particles and the CMS exhibited pH-dependent charge behavior, allowing a tunable interaction between them. Particle adsorption was irreversible and driven by electrostatic forces. In contrast, desorption and particle mobility forces are dominated by structural morphology. In addition, we found that an annealing procedure consisting of swelling/drying cycles significantly increased the adhesion strength of both particles. Using the data, we achieve a deeper understanding of the interaction of cellulose with polymeric particles, with the potential to advance the development of functional materials and contribute to various fields, including smart packaging, sensors, and biomedical applications.

4.
Sci Rep ; 14(1): 989, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200144

RESUMO

In this report, we investigate dynamic light scattering (DLS) from both randomly diffusing silica particles and acousto-responsive microgels in aqueous dispersions under ultrasonic vibration. Employing high-frequency ultrasound (US) with low amplitude ensures that the polymers remain intact without damage. We derive theoretical expressions for the homodyne autocorrelation function, incorporating the US term alongside the diffusion term. Subsequently, we successfully combined US with a conventional DLS system to experimentally characterize compact silica particles and microgels under the influence of US. Our model allows us to extract essential parameters, including particle size, frequency, and amplitude of particle vibration, based on the correlation function of the scattered light intensity. The studies involving non-responsive silica particles demonstrate that the US does not disrupt size determination, establishing them as suitable reference systems. In addition, we could be able to experimentally resolve the µs-order motion of particles for the first time. Microgels subjected to the US show the same swelling/shrinking behavior as that induced by temperature but with significantly faster kinetics. The findings of this study have potential applications in various industrial and biomedical fields such as smart coatings and drug delivery that benefit from the characterization of macromolecules subjected to the US. Furthermore, the current work may lead to characterizing the mechanical properties of soft particles based on their vibration amplitude extracted using this method.

5.
Adv Sci (Weinh) ; 11(5): e2305395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38093508

RESUMO

Ultrasonic mixing is a well-established method to disperse and mix substances. However, the effects of ultrasound on dispersed soft particles as well as on their adsorption kinetics at interfaces remain unexplored. Ultrasound not only accelerates the movement of particles via acoustic streaming, but recent research indicates that it can also manipulate the interaction of soft particles with the surrounding liquid. In this study, it evaluates the adsorption kinetics of microgel at the water-oil interface under the influence of ultrasound. It quantifies how acoustic streaming accelerates the reduction of interfacial tension. It uses high-frequency and low-amplitude ultrasound, which has no destructive effects. Furthermore, it discusses the ultrasound-induced shrinking and thus interfacial rearrangement of the microgels, which plays a secondary but non-negligible role on interfacial tension reduction. It shows that the decrease in interfacial tension due to the acoustic streaming is stronger for microgels with higher cross-linker density. Moreover, it shows that ultrasound can induce a reversible decrease in interfacial tension due to the shrinkage of microgels at the interface. The presented results may lead to a better understanding in any field where ultrasonic waves meet soft particles, e.g., controlled destabilization in foams and emulsions or systems for drug release.

6.
ACS Appl Mater Interfaces ; 16(1): 1521-1534, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38146181

RESUMO

The combination of the catechol-containing comonomer dopamine methacrylamide (DMA) with stimuli-responsive poly(N-isopropylacrylamide) (PNIPAM) microgels bears a huge potential in research and for applications due to the versatile properties of catechols. This research gives the first detailed insights into the influence of DMA on the swelling of PNIPAM microgels and their nanomechanical properties. Dynamic light scattering measurements showed that DMA decreases the volume phase transition temperature and completion temperature due to its higher hydrophobicity when compared to NIPAM, while sharpening the transition. The cross-linking ability of DMA decreases the swelling ratios and mesh sizes of the microgels. Microgels adsorbed at the solid surface are characterized by atomic force microscopy─as the DMA content increases, microgels protrude more from the surface. Force spectroscopy measurements below and above the volume phase transition temperature display a stiffening of the microgels with the incorporation of DMA and upon heating across its entire cross section as evidenced by an increase in the E modulus. This confirms the cross-linking ability of DMA. The affine network factor ß, derived from the Flory-Rehner theory, is linearly correlated with the E moduli of both pure PNIPAM and P(NIPAM-co-DMA) microgels. However, large DMA amounts hinder the microgel shrinking while maintaining mechanical stiffness, possibly due to catechol interactions within the microgel network.

7.
J Chem Phys ; 158(19)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37184008

RESUMO

We investigate the wetting properties of PDMS (Polydimethylsiloxane) pseudo-brush anchored on glass substrates. These PDMS pseudo-brushes exhibit a significantly lower contact angle hysteresis compared to hydrophobic silanized substrates. The effect of different molar masses of the used PDMS on the wetting properties seems negligible. The surface roughness and thickness of the PDMS pseudo-brush are measured by atomic force microscopy and x-ray reflectivity. The outcome shows that these surfaces are extremely smooth (topologically and chemically), which explains the reduction in contact angle hysteresis. These special features make this kind of surfaces very useful for wetting experiments. Here, the dynamics of the four-phase contact point are studied on these surfaces. The four-phase contact point dynamics on PDMS pseudo-brushes deviate substantially from its dynamics on other substrates. These changes depend only a little on the molar mass of the used PDMS. In general, PDMS pseudo-brushes increase the traveling speed of four-phase contact point on the surface and change the associated power law of position vs time.

8.
J Colloid Interface Sci ; 641: 437-448, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36948099

RESUMO

HYPOTHESIS: The superchaotropic Keggin polyoxometalate α-SiW12O404- (SiW) was recently shown to stabilize non-ionic surfactant (C18:1E10) foams owing to electrostatic repulsion that arises from the adsorption of SiW-ions to the foam interfaces. The precise mechanism of foam stabilization by SiW however remained unsolved. EXPERIMENTS: Imaging and conductimetry were used on macroscopic foams to monitor the foam collapse under free drainage and small angle neutron scattering (SANS) at a given foam height allowed for the tracking of the evolution of film thickness under quasi-stationary conditions. Thin film pressure balance (TFPB) measurements enabled to quantify the resistance of single foam films to external pressure and to identify intra-film forces. FINDINGS: At low SiW/surfactant ratios, the adsorption of SiW induces electrostatic repulsion within foam films. Above a concentration threshold corresponding to an adsorption saturation, excess of SiW screens the electrostatic repulsion that leads to thinner foam films. Despite screened electrostatics, the foam and single foam films remain very stable caused by an additional steric stabilizing force consistent with the presence of trapped micelles inside the foam films that bridge between the interfaces. These trapped micelles can serve as a surfactant reservoir, which promotes self-healing of the interface leading to much more resilient foam films in comparison to bare surfactant foams/films.

9.
Nanomaterials (Basel) ; 13(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36839066

RESUMO

In this study, a first approach to model drop size distributions in agitated nanoparticle-stabilized liquid/liquid systems with population balance equations is presented. Established coalescence efficiency models fail to predict the effect of steric hindrance of nanoparticles at the liquid/liquid interface during the film drainage process. A novel modified coalescence efficiency is developed for the population balance framework based on the film drainage model. The elaborate submodel considers the desorption energy required to detach a particle from the interface, representing an energy barrier against coalescence. With an additional implemented function in the population balance framework, the interface coverage rate by particles is calculated for each time step. The transient change of the coverage degree of the phase interface by particles is thereby considered in the submodel. Validation of the modified submodel was performed with experimental data of agitated water-in-oil (w/o) dispersions, stabilized by well-defined spherical silica nanoparticles. The nanospheres with a size of 28 nm are positively charged and were hydrophobized by silanization with dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammoniumchloride. This modeling approach is a first step toward predicting time-resolved dynamic drop size distributions of nanoparticle-stabilized liquid/liquid systems.

10.
J Am Chem Soc ; 145(6): 3615-3623, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36749116

RESUMO

Two polyaspartates bearing ortho-fluorinated azobenzenes (pFAB) as photo-responsive groups in the side chain were synthesized: PpFABLA (1) and co-polyaspartate PpFABLA-co-PBLA [11, 75%(n/n) PpFABLA content]. As a consequence of the E/Z-isomerization of the side chain, PpFABLA (1) undergoes a visible-light-induced reversible coil-helix transition in solution: Green light (525 nm) affords the coil, and violet light (400 nm) affords the helix. pFAB significantly increases the thermal stability of the Z-isomer at 20 °C (t1/2 = 66 d for the Z-isomer) and effectively counters the favored back formation of the helix. At 20%(w/w) polymer concentration, the helical polymer forms a lyotropic liquid crystal (LLC) that further orients unidirectionally inside a magnetic field, while the coil polymer results in an isotropic solution. The high viscosity of the polymer solution stabilizes the coexistence of liquid crystalline and isotropic domains, which were obtained with spatial control by partial light irradiation. When used as an alignment medium, PpFABLA (1) enables (i) the measurement of dipolar couplings without the need for a separate isotropic reference and (ii) the differentiation of enantiomers. PpFABLA-co-PBLA (11) preserves the helical structure, by intention, independently of the E/Z-isomerization of the side chain: Both photo-isomers of PpFABLA-co-PBLA (11) form a helix that─at a concentration of 16%(w/w)─form an LLC. Despite the absence of a change in the secondary structure, the E/Z-isomerization of the side chain changes the morphology of the liquid crystal and leads to different sets of dipolar coupling for the same probe molecule.

11.
Langmuir ; 39(1): 111-118, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525629

RESUMO

Foam films display exciting systems as on one hand they dictate the performance of macroscopic foams and on the other hand they allow studies of surface forces. With regard to surface forces, we attempt to disentangle the effect of the foam film surfaces and the foam film bulk. For that, we study the influence of salt (LiBr) on foam films formed by mixtures of oppositely charged polyelectrolyte and surfactant: anionic monosulfonated polyphenylene sulfone (sPSO2-220) and cationic tetradecyltrimethylammonium bromide (C14TAB). Adding a small amount of salt (≤10-3 M) decreases the foam film stability due to a weakened electrostatic net repulsion. In contrast, a large amount of salt (10-2 M) unexpectedly increases the foam film stability. Disjoining pressure isotherms reveal that the increased stability is due to an additional steric stabilization, which is attributed to sPSO2-220/C14TAB complexes in the film bulk. These bulk complexes also contribute to the measured apparent surface potential between the two air/water interfaces. We find, for the first time, the formation of Newton black films for mixtures of anionic polyelectrolytes and cationic surfactants.

12.
Soft Matter ; 18(48): 9249-9262, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36440620

RESUMO

Responsive aqueous foams are very interesting from a fundamental point of view and for various applications like foam flooding or foam flotation. In this study thermoresponsive microgels (MGs) made from poly(N-isopropyl-acrylamide) (PNIPAM) with varying cross-linker content, are used as foam stabilisers. The foams obtained are thermoresponsive and can be destabilised by increasing the temperature. The structuring of MGs inside the foam films is investigated with small-angle neutron scattering and in a thin film pressure balance. The foam films are inhomogeneous and form a network-like structure, in which thin and MG depleted zones with a thickness of ca. 30 nm are interspersed in a continuous network of thick MG containing areas with a thickness of several 100 nm. The thickness of this continuous network is related to the elastic modulus of the individual MGs, which was determined by atomic force microscopy indentation experiments. Both, the elastic moduli and foam film thicknesses, indicate a correlation to the network elasticity of the MGs predicted by the affine network model.

13.
Gels ; 8(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36286129

RESUMO

As a novel stimulus, we use high-frequency ultrasonic waves to provide the required energy for breaking hydrogen bonds between Poly(N-isopropylacrylamide) (PNIPAM) and water molecules while the solution temperature is maintained below the volume phase transition temperature (VPTT = 32 °C). Ultrasonic waves propagate through the solution and their energy will be absorbed due to the liquid viscosity. The absorbed energy partially leads to the generation of a streaming flow and the rest will be spent to break the hydrogen bonds. Therefore, the microgels collapse and become insoluble in water and agglomerate, resulting in solution turbidity. We use turbidity to quantify the ultrasound energy absorption and show that the acousto-response of PNIPAM microgels is a temporal phenomenon that depends on the duration of the actuation. Increasing the solution concentration leads to a faster turbidity evolution. Furthermore, an increase in ultrasound frequency leads to an increase in the breakage of more hydrogen bonds within a certain time and thus faster turbidity evolution. This is due to the increase in ultrasound energy absorption by liquids at higher frequencies.

14.
Nanomaterials (Basel) ; 12(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35957079

RESUMO

The incorporation of soft hydrophilic particles at the interface of water in non-polar oil emulsion droplets is crucial for several applications. However, the stabilization of water in non-polar oil emulsions with hydrophilic soft material alone is, besides certain exceptions, not possible. In our previous works, we showed that stabilizing the emulsions with well-characterized spherical hydrophobic silica nanospheres (SNs) and soft equally charged microgel particles (MGs) is a robust strategy to stabilize w/o emulsions while still incorporating a large amount of MGs at the interface. In the present study, we address the question of what the maximum amount of MGs at the interface in these kinds of emulsion droplets can be. By using well-characterized mono-disperse SNs, we are able to calculate the fraction of interface covered by the SNs and complementary that of the present MG. We found that it is not possible to decrease the SN coverage below 56% irrespective of MG softness and SN size. The findings elucidate new perspectives to the broader topic of soft/solid stabilized emulsions.

15.
J Appl Crystallogr ; 55(Pt 4): 758-768, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35974727

RESUMO

The modelling of scattering data from foams is very challenging due to the complex structure of foams and is therefore often reduced to the fitting of single peak positions or feature mimicking. This article presents a more elaborate model to describe the small-angle neutron scattering (SANS) data from foams. The model takes into account the geometry of the foam bubbles and is based on an incoherent superposition of the reflectivity curves arising from the foam films and the small-angle scattering (SAS) contribution from the plateau borders. The model is capable of describing the complete scattering curve of a foam stabilized by the standard cationic surfactant tetradecyltrimethylammonium bromide (C14TAB) with different water contents, i.e. different drainage states, and provides information on the thickness distribution of liquid films inside the foam. The mean film thickness decreases with decreasing water content because of drainage, from 28 to 22 nm, while the polydispersity increases. These results are in good agreement with the film thicknesses of individual horizontal foam films studied with a thin-film pressure balance.

16.
Polymers (Basel) ; 14(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35808600

RESUMO

The preparation and investigation of gel films from a model amphiphilic polymer conetwork (ACN) grant a deeper control and understanding of the structure-property relationship in the bulk phase and at the interface of materials with promising applications. In order to allow the simultaneous transport of hydrophilic and hydrophobic substances, polymeric networks with finely distributed hydrophilic and hydrophobic components are very suitable. When designing new soft materials such as coatings, in addition to the structure in the bulk phase, the structure at the interface plays a critical role. In this study, two alternating tetra-arm star polymers poly(ε-caprolactone) (tetra-PCL-Ox) and amino-terminated poly(ethylene glycol) (tetra-PEG-NH2) form an amphiphilic polymer conetwork. The correlation between different synthesis strategies for gel films of this ACN model system and their resulting properties will be described. Through various spin coating techniques, control over film thickness and roughness is achievable and highlights differences to macroscopic gel samples. Atomic force microscopy (AFM) measurements reveal the effect of solvents of different polarities on the swelling ability and surface structure. This correlates with AFM investigations of the mechanical properties on ACN gel films, demonstrating a strong effect on the resulting elastic modulus E, depending on the presence or absence of a good solvent during synthesis. Furthermore, a higher E modulus is obtained in the presence of the selective solvent water, compared to the non-selective solvent toluene. This observation is explained through selective swelling of the tetra-arm star polymers displaying a different hydrophobicity.

17.
Artigo em Inglês | MEDLINE | ID: mdl-35639454

RESUMO

This paper addresses the effect of polyelectrolyte stiffness on the surface structure of polyelectrolyte (P)/surfactant (S) mixtures. Therefore, two different anionic Ps with different intrinsic persistence length lP are studied while varying the salt concentration (0-10-2 M). Either monosulfonated polyphenylene sulfone (sPSO2-220, lP ∼20 nm) or sodium poly(styrenesulfonate) (PSS, lP ∼1 nm) is mixed with the cationic surfactant tetradecyltrimethylammonium bromide (C14TAB) well below its critical micelle concentration and studied with tensiometry and neutron reflectivity experiments. We kept the S concentration (10-4 M) constant, while we varied the P concentration (10-5-10-3 M of the monomer, denoted as monoM). P and S adsorb at the air/water interface for all studied mixtures. Around the bulk stoichiometric mixing point (BSMP), PSS/C14TAB mixtures lose their surface activity, whereas sPSO2-220/C14TAB mixtures form extended structures perpendicular to the surface (meaning a layer of S with attached P and additional layers of P and S underneath instead of only a monolayer of S with P). Considering the different P monomer structures as well as the impact of salt, we identified the driving force for the formation of these extended structures: compensation of all interfacial charges (P/S ratio ∼1) to maximize the gain of entropy. By increasing the flexibility of P, we can tune the interfacial structures from extended structures to monolayers. These findings may help improve applications based on the adsorption of P/S mixtures in the fields of cosmetic or oil recovery.

18.
Langmuir ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35605251

RESUMO

Mineral nanoparticle suspensions with consolidating properties have been successfully applied in the restoration of weathered architectural surfaces. However, the design of these consolidants is usually stone-specific and based on trial and error, which prevents their robust operation for a wide range of highly heterogeneous monumental stone materials. In this work, we develop a facile and versatile method to systematically study the consolidating mechanisms in action using a surface forces apparatus (SFA) with real-time force sensing and an X-ray surface forces apparatus (X-SFA). We directly assess the mechanical tensile strength of nanosilica-treated single mineral contacts and show a sharp increase in their cohesion. The smallest used nanoparticles provide an order of magnitude stronger contacts. We further resolve the microstructures and forces acting during evaporation-driven, capillary-force-induced nanoparticle aggregation processes, highlighting the importance of the interactions between the nanoparticles and the confining mineral walls. Our novel SFA-based approach offers insight into nano- and microscale mechanisms of consolidating silica treatments, and it can aid the design of nanomaterials used in stone consolidation.

19.
Langmuir ; 38(17): 5275-5285, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35142528

RESUMO

Combining stimuli-responsive properties of gels with adhesive properties of mussels is highly interesting for a large field of applications as, e.g., in life science. Therefore, the present paper focuses on the copolymerization of poly(N-isopropylacrylamide) (PNIPAM) microgels with dopamine methacrylamide (DMA). A detailed understanding of reaction kinetics is crucial to figure out an optimized synthesis strategy for tailoring microgels with adhesive properties. The present study addresses the influence of relevant synthesis parameters as the injection time of DMA during the microgel synthesis and the overall reaction time of the microgel. Reaction kinetics were studied by mass spectrometry of time samples taken during the microgel synthesis. This allowed us to determine the monomer consumption of NIPAM, the cross-linker N,N'-methylenebisacrylamide (BIS), and DMA. A second-order reaction kinetics was found for DMA incorporation. The amount of DMA incorporated in the resulting microgel was successfully determined by a combination of UV-vis and NMR spectroscopy to level off limitations of both methods. The dependence of the hydrodynamic radius on temperature was determined by DLS measurements for the microgels. While an early injection of DMA stops the PNIPAM polymerization due to scavenging, it greatly enhances the reaction speed of DMA. The faster reaction of DMA and the incomplete NIPAM and BIS conversion also compensate for shorter reaction times with respect to the incorporated amount of DMA. On the contrary, a later injection of DMA leads to a full NIPAM monomer and BIS cross-linker consumption. An overall reaction time of 60 min ensures the DMA incorporation. Longer reaction times lead to clumping. First adhesion tests show an increased adhesion of P(NIPAM-co-DMA) microgels compared to pure PNIPAM microgels, when mechanical stress is applied.


Assuntos
Microgéis , Acrilamidas , Resinas Acrílicas , Adesivos , Dopamina , Cinética , Polimerização
20.
Soft Matter ; 18(5): 1089-1099, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35037679

RESUMO

The paper addresses coupling of magnetic nanoparticles (MNPs) with the polymer matrix of temperature-sensitive microgels and their response to magnetic fields. Therefore, CoFe2O4@CA (CA = citric acid) NPs are embedded within N-isopropylacrylamid (NIPAM) based microgels. The volume phase transition (VPT) of the magnetic microgels and the respective pure microgels is studied by dynamic light scattering and electrophoretic mobility measurements. The interaction between MNPs and microgel network is studied via magnetometry and AC-susceptometry using a superconducting quantum interference device (SQUID). The data show a significant change of the magnetic properties by crossing the VPT temperature (VPTT). The change is related to the increased confinement of the MNP due to the shrinking of the microgels. Modifying the microgel with hydrophobic allyl mercaptan (AM) affects the swelling ability and the magnetic response, i.e. the coupling of MNPs with the polymer matrix. Modeling the AC-susceptibility data results in an effective size distribution. This distribution represents the varying degree of constraint in MNP rotation and motion by the microgel network. These findings help to understand the interaction between MNPs and the microgel matrix to design multi responsive systems with tunable particle matrix coupling strength for future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...