Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Astron (Dordr) ; 51(3): 1677-1694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744306

RESUMO

Recently, the European Commission supported by many European countries has announced large investments towards the commercialization of quantum technology (QT) to address and mitigate some of the biggest challenges facing today's digital era - e.g. secure communication and computing power. For more than two decades the QT community has been working on the development of QTs, which promise landmark breakthroughs leading to commercialization in various areas. The ambitious goals of the QT community and expectations of EU authorities cannot be met solely by individual initiatives of single countries, and therefore, require a combined European effort of large and unprecedented dimensions comparable only to the Galileo or Copernicus programs. Strong international competition calls for a coordinated European effort towards the development of QT in and for space, including research and development of technology in the areas of communication and sensing. Here, we aim at summarizing the state of the art in the development of quantum technologies which have an impact in the field of space applications. Our goal is to outline a complete framework for the design, development, implementation, and exploitation of quantum technology in space.

2.
Phys Rev Lett ; 126(17): 170402, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988404

RESUMO

In this Letter, we demonstrate magnetogravitational matter-wave lensing as a novel tool in atom-optics in atomtronic waveguides. We collimate and focus matter waves originating from Bose-Einstein condensates and ultracold thermal atoms in ring-shaped time-averaged adiabatic potentials. We demonstrate "delta-kick cooling" of Bose-Einstein condensates, reducing their expansion energies by a factor of 46 down to 800 pK. The atomtronic waveguide ring has a diameter of less than one millimeter, compared to other state-of-the-art experiments requiring zero gravity or free-flight distances of ten meters and more. This level of control with extremely reduced spatial requirements is an important step toward atomtronic quantum sensors.

3.
Nature ; 570(7760): 205-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168098

RESUMO

Some of the most sensitive and precise measurements-for example, of inertia1, gravity2 and rotation3-are based on matter-wave interferometry with free-falling atomic clouds. To achieve very high sensitivities, the interrogation time has to be very long, and consequently the experimental apparatus needs to be very tall (in some cases reaching ten or even one hundred metres) or the experiments must be performed in microgravity in space4-7. Cancelling gravitational acceleration (for example, in atomtronic circuits8,9 and matter-wave guides10) is expected to result in compact devices with extended interrogation times and therefore increased sensitivity. Here we demonstrate smooth and controllable matter-wave guides by transporting Bose-Einstein condensates (BECs) over macroscopic distances. We use a neutral-atom accelerator ring to bring BECs to very high speeds (16 times their sound velocity) and transport them in a magnetic matter-wave guide for 15 centimetres while fully preserving their internal coherence. The resulting high angular momentum of more than 40,000h per atom (where h is the reduced Planck constant) gives access to the higher Landau levels of quantum Hall states, and the hypersonic velocities achieved, combined with our ability to control potentials with picokelvin precision, will facilitate the study of superfluidity and give rise to tunnelling and a large range of transport regimes of ultracold atoms11-13. Coherent matter-wave guides are expected to enable interaction times of several seconds in highly compact devices and lead to portable guided-atom interferometers for applications such as inertial navigation and gravity mapping.

4.
Appl Opt ; 57(33): 9863-9867, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462022

RESUMO

We present a simple high-precision method to quickly and accurately measure the diameters of Gaussian beams, Airy spots, and central peaks of Bessel beams ranging from sub-millimeter to many centimeters without specialized equipment. By simply moving a wire through the beam and recording the relative losses using an optical power meter, one can easily measure the beam diameters with a precision of 1%. The accuracy of this method has been experimentally verified for Gaussian beams down to the limit of a commercial slit-based beam profiler (3%).

5.
Phys Rev Lett ; 99(8): 083001, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17930945

RESUMO

We demonstrate a novel class of trapping potentials, time-averaged adiabatic potentials (TAAP), which allows the generation of a large variety of traps for quantum gases and matter-wave guides for atom interferometers. Examples include stacks of pancakes, rows of cigars, and multiple rings or sickles. The traps can be coupled through controllable tunneling barriers or merged altogether. We present analytical expressions for pancake-, cigar-, and ring-shaped traps. The ring geometry is of particular interest for guided matter-wave interferometry as it provides a perfectly smooth waveguide of widely tunable diameter and thus adjustable sensitivity of the interferometer. The flexibility of the TAAP would make possible the use of Bose-Einstein condensates as coherent matter waves in large-area atom interferometers.


Assuntos
Gases , Interferometria , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA