Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 48(2): 323-332, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34742597

RESUMO

The performance of therapeutic ultrasonic (TUS) devices has a high degree of variability because of the fragility of the equipment (its transducer in particular) and its handling. These facts raise doubts about the effectiveness and safety of treatments employing such devices. Currently there is no simple way to adequately verify the performance of these devices. In our first experiments, we used a thermochromatic test body (typically a cylindrical plate 3.7 cm in diameter and 5.8 mm high) irradiated with therapeutic transducers driven by a standard radiofrequency (RF) generator. Results revealed a linear relationship between the thermal image areas, generated by the transducer's irradiation, and their respective effective radiation areas (ERAs), suggesting a good correlation. With five 3-MHz transducers, our group also observed the linear relationship using commercial TUS RF driving devices. In the present work, we used four 1-MHz transducers with their respective TUS RF driving devices and verified that there is a linear relationship between the thermal images and the ERAs at intensities of 1.0 ± 0.1 and 0.5 ± 0.05 W/cm2. The linear relationship obtained at both intensities confirms the suggestion that these thermochromatic test bodies can be used as the first evaluation of the ERAs and can monitor their changes with use. Moreover, if a previous assessment of the ERA and transducer intensities is performed, it is possible to follow the variation in ERA simply by monitoring the test body thermal stain.


Assuntos
Terapia por Ultrassom , Ultrassom , Desenho de Equipamento , Transdutores
2.
Biomed Phys Eng Express ; 7(5)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34340223

RESUMO

The quantitative ultrasound technique was used to evaluate bone-mimicking phantoms; however, these phantoms do not mimic the intermediate stages of cortical bone healing. We propose using windshield glass as an original material to produce phantoms that mimic the characteristics of three different stages of cortical bone healing. This material was processed via a route that included breaking, grinding, compacting, drying, and sintering in four temperature groups: 625 °C, 645 °C, 657 °C, and 663 °C. The parameters evaluated were the ultrasonic longitudinal phase velocity (cL), corrected (αc) ultrasonic attenuation coefficient, and bulk density (ρs). The results showed that the mean values ofcL,αc,andρsvaried from 2, 398 to 4, 406 m·s-1, 3 to 10 dB·cm-1, and 1, 563 to 2, 089 kg·m-3, respectively. The phantoms exhibited properties comparable with the three stages of cortical bone healing and can be employed in diagnostic and therapeutic studies using ultrasound.


Assuntos
Ultrassom , Osso Cortical/diagnóstico por imagem , Imagens de Fantasmas , Ultrassonografia
3.
Acta Ortop Bras ; 26(4): 255-259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210256

RESUMO

OBJECTIVE: This work evaluates the relationship between ultrasonic reflection and bone density from fourteen cylindrical bovine cortical bone samples (3.0-cm thick). METHODS: Twenty US reflection signals per sample were acquired along the bone surface (2.0-mm step). The Integrated Reflection Coefficient (IRC) from each signal was compared to Quantitative Computed Tomography (QCT). RESULTS: Seven IRC and QCT curves presented Pearson's Correlation R-values above 0.5. For weak correlation curves, QCT and IRC showed similar trends in several segments. CONCLUSION: IRC was sensitive to bone density variation. Level of Evidence: Experimental Study, Investigating a Diagnostic Test.


OBJETIVO: Este estudo avalia a relação entre a reflexão ultrassônica e a densidade óssea de 14 amostras cilíndricas de osso cortical bovino (3,0 cm de espessura). MÉTODOS: Foi realizada a aquisição de 20 sinais de reflexão ultrassônica por amostra (passo de 2,0 mm), ao longo da superfície óssea. O Coeficiente de Reflexão Integrado (IRC) de cada sinal foi comparado por Tomografia Computadorizada Quantitativa (QCT). RESULTADOS: Sete curvas de IRC e QCT apresentaram valor de Correlação R de Pearson acima de 0,5. Para curvas de correlação fraca, QCT e IRC apresentaram tendências semelhantes em vários segmentos. CONCLUSÃO: O IRC foi sensível à variação da densidade óssea. Nível de evidência: Estudo Experimental, Investigação de Exame Diagnóstico.

4.
Sci Rep ; 8(1): 11963, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097589

RESUMO

Bone mineral density is an important parameter for the diagnosis of bone diseases, as well as for predicting fractures and treatment monitoring. Thus, the aim of the present study was to evaluate the potential of Quantitative Ultrasound (QUS) to monitor bone changes after calcium, phosphorus, and magnesium loss in rat femurs in vitro during a demineralization process. Four quantitative ultrasound parameters were estimated from bone surface echoes in eight femur diaphysis of rats. The echo signals were acquired during a decalcification process by Ethylenediaminetetraacetic Acid (EDTA). The results were compared to Quantitative Computed Tomography (QCT) and inductively coupled plasma optical emission spectrometry measurements for validation. Integrated Reflection Coefficient (IRC) reflection parameters and Frequency Slope of Reflection Transfer Function (FSRTF) during demineralization tended to decrease, while the backscattering parameter Apparent Integrated Backscatter (AIB) increased and Frequency Slope of Apparent Backscatter (FSAB) showed an oscillatory behavior with no defined trend. Results indicate a clear relation between demineralization and the corresponding decrease in the reflection parameters and increase in the scattering parameters. The trend analysis of the fall curve of the chemical elements showed a better relationship between IRC and QCT. It was possible to monitor bone changes after ions losses, through the QUS. Thus, it is an indication that the proposed protocol has potential to characterize bone tissue in animal models, providing consistent results towards standardization of bone characterization studies by QUS endorsing its use in humans.


Assuntos
Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Cálcio/metabolismo , Fêmur , Magnésio/metabolismo , Fósforo/metabolismo , Ultrassonografia , Animais , Densidade Óssea , Ratos , Ultrassonografia/métodos
5.
Ultrasonics ; 90: 144-152, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29966842

RESUMO

The purpose of this work was to obtain an anthropomorphic phantom with acoustic properties similar to those of breast tissue, possessing lactiferous duct-like structures, which would be a first for this type of phantom. Breast lesions usually grow in glandular tissues or lactiferous ducts. Shape variations in these structures are detectable by using ultrasound imaging. To increase early diagnosis, it is important to develop computer-aided diagnosis (CAD) systems and improve medical training. Using tissue-like materials that mimic known internal structures can help achieve both of these goals. However, most breast ultrasound phantoms described in the literature emulate only fat tissues and lesion-like masses. In addition, commercially available phantoms claim to be realistic, but do not contain lactiferous duct structures. In this work, we collected reference images from both breasts of ten healthy female volunteers aged between 20 and 30 years using a 10 MHz linear transducer of a B-mode medical ultrasound system. Histograms of the grey scale distribution of each tissue component of interest, the grey level means, and standard deviations of the regions of interest were obtained. Phantoms were produced using polyvinyl chloride plastisol (PVCP) suspensions. The lactiferous duct-like structures were prepared using pure PVCP. Solid scatterers, such as alumina (mesh #100) and graphite powders (mesh #140) were added to the phantom matrix to mimic glandular and fat tissue, respectively. The phantom duct-like structure diameters observed on B-mode images (1.92 mm ±â€¯0.44) were similar to real measures obtained with a micrometer (2.08 mm ±â€¯0.23). The phantom ducts are easy to produce and are largely stable for at least one year. This phantom allows the researchers to elaborate the structure at their will and may be used in training and as a reference for development of CAD systems.


Assuntos
Mama/anatomia & histologia , Mama/diagnóstico por imagem , Glândulas Mamárias Humanas/anatomia & histologia , Glândulas Mamárias Humanas/diagnóstico por imagem , Imagens de Fantasmas , Plastificantes/química , Cloreto de Polivinila/química , Ultrassonografia Mamária/métodos , Feminino , Humanos , Teste de Materiais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Res. Biomed. Eng. (Online) ; 33(1): 42-49, Mar. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-842478

RESUMO

Abstract Introduction Therapeutic ultrasound (TUS) is a widespread modality in physiotherapy, and the water bag technique is a coupling method employed in the presence of anatomical irregularities in the treatment area. The aim of the present study is to evaluate the acoustic attenuation of the water bag and its effectiveness as a TUS coupling agent. Methods The rated output powers (ROPs) of the TUS equipment were evaluated based on IEC 61689. Then, a radiation force balance was used to measure ROP with and without a water bag (latex and nitrile gloves filled with deionized water) between a TUS transducer and the cone-shaped target of the balance. Each experiment was performed five times for each nominal power (0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0 W) and in the following configurations: without the water bag (A), with nitrile gloves and with (B) and without (C) a height controller, and latex gloves with (D) and without (E) height controller. ROPs obtained in different media were compared. Results The highest relative error of ROP was 16.72% for 0.5 W. Although the power values of the equipment were within the range recommended by IEC, there was a significant difference between the ROP values measured with A and with B, C and D. Conclusion As intensity differences below 0.5 W/cm2 are considered clinically not relevant, conditions A, B, C, D, or E can be used interchangeably.

7.
J Ther Ultrasound ; 5: 3, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28149518

RESUMO

BACKGROUND: One goal of therapeutic ultrasound is enabling heat generation in tissue. Ultrasound application protocols typically neglect these processes of absorption and backscatter/reflection at the skin/fat, fat/muscle, and muscle/bone interfaces. The aim of this study was to investigate the heating process at interfaces close to the transducer and the bone with the aid of computer simulation and tissue-mimicking materials (phantoms). METHODS: The experimental setup consists of physiotherapeutic ultrasound equipment for irradiation, two layers of soft tissue-mimicking material, and one with and one without an additional layer of bone-mimicking material. Thermocouple monitoring is used in both cases. A computational model is used with the experimental parameters in a COMSOL® software platform. RESULTS: The experimental results show significant temperature rise (42 °C) at 10 mm depth, regardless of bone layer presence, diverging 3 °C from the simulated values. The probable causes are thermocouple and transducer heating and interface reverberations. There was no statistical difference in the experimental results with and without the cortical bone for the central thermocouple of the first interface [t(38) = -1.52; 95% CI = -0.85, 0.12; p = 14]. Temperature rise (>6 °C) close to the bone layer was lower than predicted (>21 °C), possibly because without the bone layer, thermocouples at 30 mm make contact with the water bath and convection intensifies heat loss; this factor was omitted in the simulation model. CONCLUSIONS: This work suggests that more attention should be given to soft tissue layer interfaces in ultrasound therapeutic procedures even in the absence of a close bone layer.

8.
J Ther Ultrasound ; 4: 24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27729978

RESUMO

BACKGROUND: Low-intensity physiotherapeutic ultrasound has been used in physical therapy clinics; however, there remain some scientific issues regarding the bone-healing process. The objective of this study was to investigate the influence of low-intensity physiotherapeutic ultrasound on the initial stage of bone healing in rats. METHODS: Twenty-two male adult rats were assessed quantitatively and qualitatively using radiographic, biochemical, and histological analyses. Numerical simulations were also performed. Fractures in animals in the ultrasound group (n = 11) were treated with low-intensity ultrasound (pulsed mode, duty cycle 20 %) for 10 min daily at an intensity of 40 mW/cm2 SATA (1.0 MHz) for 10 days. Fractures in animals in the control group (n = 11) were not treated. RESULTS: Alkaline phosphatase levels were non-significantly higher in the ultrasound group than in the control group in the time intervals considered (t(13) = 0.440; 95 % confidence interval (CI) -13.79 to 20.82; p = 0.67). Between-group serum calcium levels were also not significantly different (t(13) = -0.842; 95 % CI -0.48 to 0.21; p = 0.42). Finally, there were no significant differences in radiological scores between the two groups (U = 118; 95 % CI -1.99 to 1.99; p = 0.72). However, the diameter of the newly formed bone tissue was greater and more evident in the ultrasound group. CONCLUSIONS: Thirteen days after fracture, there was no significant between-group differences in bone-healing processes, although the increased alkaline phosphatase levels and diameter of new bone tissue need to be further investigated.

9.
Ultrasonics ; 70: 98-106, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27153374

RESUMO

Ultrasonic phantoms are objects that mimic some features of biological tissues, allowing the study of their interactions with ultrasound (US). In the diagnostic-imaging field, breast phantoms are an important tool for testing performance and optimizing US systems, as well as for training medical professionals. This paper describes the design and manufacture of breast lesions by using polyvinyl chloride plastisol (PVCP) as the base material. Among the materials available for this study, PVCP was shown to be stable, durable, and easy to handle. Furthermore, it is a nontoxic, nonpolluting, and low-cost material. The breast's glandular tissue (image background) was simulated by adding graphite powder with a concentration of 1% to the base material. Mixing PVCP and graphite powder in differing concentrations allows one to simulate lesions with different echogenicity patterns (anechoic, hypoechoic, and hyperechoic). From this mixture, phantom materials were obtained with speed of sound varying from 1379.3 to 1397.9ms(-1) and an attenuation coefficient having values between 0.29 and 0.94dBcm(-1) for a frequency of 1MHz at 24°C. A single layer of carnauba wax was added to the lesion surface in order to evaluate its applicability for imaging. The images of the phantoms were acquired using commercial ultrasound equipment; a specialist rated the images, elaborating diagnoses representative of both benign and malignant lesions. The results indicated that it was possible to easily create a phantom by using low-cost materials, readily available in the market and stable at room temperature, as the basis of ultrasonic phantoms that reproduce the image characteristics of fatty breast tissue and typical lesions of the breast.


Assuntos
Materiais Biomiméticos/química , Neoplasias da Mama/diagnóstico por imagem , Mamografia/instrumentação , Imagens de Fantasmas , Plastificantes/química , Cloreto de Polivinila/química , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Teste de Materiais , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Rev. bras. eng. biomed ; 30(1): 3-10, Mar. 2014. ilus, tab
Artigo em Inglês | LILACS | ID: lil-707132

RESUMO

INTRODUCTION: Ultrasound Transit-Time flowmeters are based on the fact that the time required for an ultrasound pulse to propagate through a given distance in a moving medium is a function of the vectorial sum of pulse propagation velocity and medium velocity. The most common application of this flowmeter in medicine is in the evaluation of blood flow in arteries and veins during heart vascular surgery. The present article describes the design, construction and evaluation of a flow phantom for transit-time flowmeters calibration. METHODS: Basically, it is a hydraulic circuit containing degassed and distilled water. In such a circuit, a constant differential water level is established between two columns that are interconnected by tubes with defined resistance, which determines a known flow rate. A basic theoretical model to estimate the system Reynolds Number and resistance was developed. RESULTS: A flow range between 4.43 ± 0.18 ml.min-1 and 106.88 ± 0.27 ml.min-1 was found to be compatible with physiological values in small vessels. The pressure range was between 0.20 ± 0.03 cmH2O and 12.53 ± 0.07 cmH2O, and the larger Reynolds Number was 1134.07. Experimental and theoretical resistance values were similar. CONCLUSION: A reproducible phantom was designed and built to be assembled with standard low-cost materials and is capable of generating adjustable and continuous flows that can be used to calibrate TTFM systems.

11.
Ultrasound Med Biol ; 28(11-12): 1499-508, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12498946

RESUMO

Doppler ultrasound (US) is potentially a valuable method for monitoring changes of blood flow velocity over a period of many minutes or even hours, but is seldom used in this way. One difficulty that may have contributed to this is the problem of maintaining a fixed geometry between the US beam and the blood vessel. A method of improving the success of monitoring might be to actively steer the US beam so as to maintain an adequate signal even when small displacements of the transducer occur. We have designed and built a prototype system for this purpose. The system comprises a continuous-wave phased-array transducer controlled by a purpose-built Doppler unit. The system constantly evaluates the quality of the returning Doppler signal in terms of total power and signal-to-noise ratio (SNR) (evaluated by assessing the quality of derived envelope signals), and steers the ultrasonic beam in a manner so as to improve the signal, should this be necessary. The system was tested in vitro, where the automatic tracking of the Doppler signal doubled the effective beam width of the transducer. Further developments that increase sensitivity and steering range should result in US Doppler systems that are better suited to long-term monitoring.


Assuntos
Velocidade do Fluxo Sanguíneo , Ultrassonografia Doppler/instrumentação , Eletrônica Médica , Desenho de Equipamento , Humanos , Monitorização Fisiológica/instrumentação , Processamento de Sinais Assistido por Computador , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...