Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Behav Neurosci ; 13: 141, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293404

RESUMO

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and autism. FXS is also accompanied by attention problems, hyperactivity, anxiety, aggression, poor sleep, repetitive behaviors, and self-injury. Recent work supports the role of γ-aminobutyric-acid (GABA), the primary inhibitory neurotransmitter in the brain, in mediating symptoms of FXS. Deficits in GABA machinery have been observed in a mouse model of FXS, including a loss of tonic inhibition in the amygdala, which is mediated by extrasynaptic GABAA receptors. Humans with FXS also show reduced GABAA receptor availability. Here, we sought to evaluate the potential of gaboxadol (also called OV101 and THIP), a selective and potent agonist for delta-subunit-containing extrasynaptic GABAA receptors (dSEGA), as a therapeutic agent for FXS by assessing its ability to normalize aberrant behaviors in a relatively uncharacterized mouse model of FXS (Fmr1 KO2 mice). Four behavioral domains (hyperactivity, anxiety, aggression, and repetitive behaviors) were probed using a battery of behavioral assays. The results showed that Fmr1 KO2 mice were hyperactive, had abnormal anxiety-like behavior, were more irritable and aggressive, and had an increased frequency of repetitive behaviors compared to wild-type (WT) littermates, which are all behavioral deficits reminiscent of individuals with FXS. Treatment with gaboxadol normalized all of the aberrant behaviors observed in Fmr1 KO2 mice back to WT levels, providing evidence of its potential benefit for treating FXS. We show that the potentiation of extrasynaptic GABA receptors alone, by gaboxadol, is sufficient to normalize numerous behavioral deficits in the FXS model using endpoints that are directly translatable to the clinical presentation of FXS. Taken together, these data support the future evaluation of gaboxadol in individuals with FXS, particularly with regard to symptoms of hyperactivity, anxiety, irritability, aggression, and repetitive behaviors.

2.
Sci Adv ; 5(4): eaaw1567, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31001591

RESUMO

Designer receptors exclusively activated by designer drugs (DREADDs) derived from muscarinic receptors not only are a powerful tool to test causality in basic neuroscience but also are potentially amenable to clinical translation. A major obstacle, however, is that the widely used agonist clozapine N-oxide undergoes conversion to clozapine, which penetrates the blood-brain barrier but has an unfavorable side effect profile. Perlapine has been reported to activate DREADDs at nanomolar concentrations but is not approved for use in humans by the Food and Drug Administration or the European Medicines Agency, limiting its translational potential. Here, we report that the atypical antipsychotic drug olanzapine, widely available in various formulations, is a potent agonist of the human M4 muscarinic receptor-based DREADD, facilitating clinical translation of chemogenetics to treat central nervous system diseases.


Assuntos
Drogas Desenhadas/farmacologia , Olanzapina/química , Olanzapina/farmacologia , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/genética , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Simulação por Computador , Drogas Desenhadas/química , Ensaios de Triagem em Larga Escala , Humanos , Transdução de Sinais
3.
J Neurosci ; 36(45): 11427-11434, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27911745

RESUMO

Neuroepigenetics is a newly emerging field in neurobiology that addresses the epigenetic mechanism of gene expression regulation in various postmitotic neurons, both over time and in response to environmental stimuli. In addition to its fundamental contribution to our understanding of basic neuronal physiology, alterations in these neuroepigenetic mechanisms have been recently linked to numerous neurodevelopmental, psychiatric, and neurodegenerative disorders. This article provides a selective review of the role of DNA and histone modifications in neuronal signal-induced gene expression regulation, plasticity, and survival and how targeting these mechanisms could advance the development of future therapies. In addition, we discuss a recent discovery on how double-strand breaks of genomic DNA mediate the rapid induction of activity-dependent gene expression in neurons.


Assuntos
Encéfalo/fisiologia , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Modelos Genéticos , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Animais , Humanos
4.
Nat Neurosci ; 19(10): 1321-30, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27526204

RESUMO

Normal brain function depends on the interaction between highly specialized neurons that operate within anatomically and functionally distinct brain regions. Neuronal specification is driven by transcriptional programs that are established during early neuronal development and remain in place in the adult brain. The fidelity of neuronal specification depends on the robustness of the transcriptional program that supports the neuron type-specific gene expression patterns. Here we show that polycomb repressive complex 2 (PRC2), which supports neuron specification during differentiation, contributes to the suppression of a transcriptional program that is detrimental to adult neuron function and survival. We show that PRC2 deficiency in striatal neurons leads to the de-repression of selected, predominantly bivalent PRC2 target genes that are dominated by self-regulating transcription factors normally suppressed in these neurons. The transcriptional changes in PRC2-deficient neurons lead to progressive and fatal neurodegeneration in mice. Our results point to a key role of PRC2 in protecting neurons against degeneration.


Assuntos
Inativação Gênica , Degeneração Neural/genética , Complexo Repressor Polycomb 2/metabolismo , Animais , Morte Celular/genética , Sobrevivência Celular/genética , Regulação para Baixo , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Complexo Repressor Polycomb 2/deficiência , Complexo Repressor Polycomb 2/genética
5.
J Exp Med ; 212(11): 1771-81, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26392221

RESUMO

Studies investigating the causes of autism spectrum disorder (ASD) point to genetic, as well as epigenetic, mechanisms of the disease. Identification of epigenetic processes that contribute to ASD development and progression is of major importance and may lead to the development of novel therapeutic strategies. Here, we identify the bromodomain and extraterminal domain-containing proteins (BETs) as epigenetic regulators of genes involved in ASD-like behaviors in mice. We found that the pharmacological suppression of BET proteins in the brain of young mice, by the novel, highly specific, brain-permeable inhibitor I-BET858 leads to selective suppression of neuronal gene expression followed by the development of an autism-like syndrome. Many of the I-BET858-affected genes have been linked to ASD in humans, thus suggesting the key role of the BET-controlled gene network in the disorder. Our studies suggest that environmental factors controlling BET proteins or their target genes may contribute to the epigenetic mechanism of ASD.


Assuntos
Transtorno do Espectro Autista/etiologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , Animais , Transtorno do Espectro Autista/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Epigênese Genética , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Nature ; 516(7531): 349-54, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519132

RESUMO

Naturally occurring variations of Polycomb repressive complex 1 (PRC1) comprise a core assembly of Polycomb group proteins and additional factors that include, surprisingly, autism susceptibility candidate 2 (AUTS2). Although AUTS2 is often disrupted in patients with neuronal disorders, the mechanism underlying the pathogenesis is unclear. We investigated the role of AUTS2 as part of a previously identified PRC1 complex (PRC1-AUTS2), and in the context of neurodevelopment. In contrast to the canonical role of PRC1 in gene repression, PRC1-AUTS2 activates transcription. Biochemical studies demonstrate that the CK2 component of PRC1-AUTS2 neutralizes PRC1 repressive activity, whereas AUTS2-mediated recruitment of P300 leads to gene activation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) demonstrated that AUTS2 regulates neuronal gene expression through promoter association. Conditional targeting of Auts2 in the mouse central nervous system (CNS) leads to various developmental defects. These findings reveal a natural means of subverting PRC1 activity, linking key epigenetic modulators with neuronal functions and diseases.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica/genética , Proteínas/metabolismo , Animais , Comportamento Animal/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto , Feminino , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Genótipo , Células HEK293 , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas/genética , Fatores de Transcrição , Ubiquitinação
7.
Nat Neurosci ; 17(4): 533-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24584053

RESUMO

Cocaine-mediated repression of the histone methyltransferase (HMT) G9a has recently been implicated in transcriptional, morphological and behavioral responses to chronic cocaine administration. Here, using a ribosomal affinity purification approach, we found that G9a repression by cocaine occurred in both Drd1-expressing (striatonigral) and Drd2-expressing (striatopallidal) medium spiny neurons. Conditional knockout and overexpression of G9a within these distinct cell types, however, revealed divergent behavioral phenotypes in response to repeated cocaine treatment. Our studies further indicated that such developmental deletion of G9a selectively in Drd2 neurons resulted in the unsilencing of transcriptional programs normally specific to striatonigral neurons and in the acquisition of Drd1-associated projection and electrophysiological properties. This partial striatopallidal to striatonigral 'switching' phenotype in mice indicates a new role for G9a in contributing to neuronal subtype identity and suggests a critical function for cell type-specific histone methylation patterns in the regulation of behavioral responses to environmental stimuli.


Assuntos
Corpo Estriado/citologia , Neurônios Dopaminérgicos/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Adolescente , Adulto , Idoso , Animais , Cocaína/administração & dosagem , Cocaína/farmacologia , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Especificidade de Órgãos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Adulto Jovem
8.
Science ; 342(6163): 1254-8, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24311694

RESUMO

The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excitability. miR-128 governs motor activity by suppressing the expression of various ion channels and signaling components of the extracellular signal-regulated kinase ERK2 network that regulate neuronal excitability. In mice, a reduction of miR-128 expression in postnatal neurons causes increased motor activity and fatal epilepsy. Overexpression of miR-128 attenuates neuronal responsiveness, suppresses motor activity, and alleviates motor abnormalities associated with Parkinson's-like disease and seizures in mice. These data suggest a therapeutic potential for miR-128 in the treatment of epilepsy and movement disorders.


Assuntos
MicroRNAs/metabolismo , Atividade Motora , Neurônios/fisiologia , Prosencéfalo/fisiologia , Animais , Corpo Estriado/citologia , Dendritos/fisiologia , Epilepsia/metabolismo , Hipercinese/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Prosencéfalo/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Regulação para Cima
9.
Nat Cell Biol ; 13(6): 676-85, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21602796

RESUMO

Polarized neurites (axons and dendrites) form the functional circuitry of the nervous system. Secreted guidance cues often control the polarity of neuron migration and neurite outgrowth by regulating ion channels. Here, we show that secreted semaphorin 3A (Sema3A) induces the neurite identity of Xenopus spinal commissural interneurons (xSCINs) by activating Ca(V)2.3 channels (Ca(V)2.3). Sema3A treatment converted the identity of axons of cultured xSCINs to that of dendrites by recruiting functional Ca(V)2.3. Inhibition of Sema3A signalling prevented both the expression of Ca(V)2.3 and acquisition of the dendrite identity, and inhibition of Ca(V)2.3 function resulted in multiple axon-like neurites of xSCINs in the spinal cord. Furthermore, Sema3A-triggered cGMP production and PKG activity induced, respectively, the expression of functional Ca(V)2.3 and the dendrite identity. These results reveal a mechanism by which a guidance cue controls the identity of neurites during nervous system development.


Assuntos
Canais de Cálcio Tipo R/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Sistema Nervoso/embriologia , Semaforina-3A/metabolismo , Xenopus/embriologia , Sequência de Aminoácidos , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Sequência de Bases , Western Blotting , Células Cultivadas , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Embrião não Mamífero/efeitos dos fármacos , Imuno-Histoquímica , Dados de Sequência Molecular , Sistema Nervoso/efeitos dos fármacos , Semaforina-3A/farmacologia , Alinhamento de Sequência
10.
Nat Neurosci ; 11(7): 762-71, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18536712

RESUMO

Plasma membrane potentials gate the ion channel conductance that controls external signal-induced neuronal functions. We found that diffusible guidance molecules caused membrane potential shifts that resulted in repulsion or attraction of Xenopus laevis spinal neuron growth cones. The repellents Sema3A and Slit2 caused hyperpolarization, and the attractants netrin-1 and BDNF caused depolarization. Clamping the growth-cone potential at the resting state prevented Sema3A-induced repulsion; depolarizing potentials converted the repulsion to attraction, whereas hyperpolarizing potentials had no effect. Sema3A increased the intracellular concentration of guanosine 3',5'-cyclic monophosphate ([cGMP]i) by soluble guanylyl cyclase, resulting in fast onset and long-lasting hyperpolarization. Pharmacological increase of [cGMP](i) caused protein kinase G (PKG)-mediated depolarization, switching Sema3A-induced repulsion to attraction. This bimodal switch required activation of either Cl(-) or Na+ channels, which, in turn, regulated the differential intracellular Ca2+ concentration increase across the growth cone. Thus, the polarity of growth-cone potential shifts imposes either attraction or repulsion, and Sema3A achieves this through cGMP signaling.


Assuntos
Cones de Crescimento/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Potenciais da Membrana/fisiologia , Neurônios/citologia , Transdução de Sinais/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cálcio/metabolismo , Células Cultivadas , GMP Cíclico/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Cones de Crescimento/fisiologia , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Microinjeções/métodos , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/farmacologia , Netrina-1 , Técnicas de Patch-Clamp/métodos , Potássio/farmacologia , Semaforina-3A/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Fatores de Tempo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/farmacologia , Xenopus laevis
11.
Neuron ; 58(5): 694-707, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18549782

RESUMO

Cyclic nucleotide-gated channels (CNGCs) transduce external signals required for sensory processes, e.g., photoreception, olfaction, and taste. Nerve growth cone guidance by diffusible attractive and repulsive molecules is regulated by differential growth cone Ca2+ signaling. However, the Ca2+-conducting ion channels that transduce guidance molecule signals are largely unknown. We show that rod-type CNGC-like channels function in the repulsion of cultured Xenopus spinal neuron growth cones by Sema3A, which triggers the production of the cGMP that activates the Xenopus CNGA1 (xCNGA1) subunit-containing channels in interneurons. Downregulation of xCNGA1 or overexpression of a mutant xCNGA1 incapable of binding cGMP abolished CNG currents and converted growth cone repulsion to attraction in response to Sema3A. We also show that Ca2+ entry through xCNGCs is required to mediate the repulsive Sema3A signal. These studies extend our knowledge of the function of CNGCs by demonstrating their requirement for signal transduction in growth cone guidance.


Assuntos
GMP Cíclico/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Cones de Crescimento/efeitos dos fármacos , Canais Iônicos/fisiologia , Neurônios/citologia , Semaforina-3A/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Proteínas de Transporte/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Embrião não Mamífero , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intercelular , Canais Iônicos/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Microinjeções , Modelos Biológicos , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Compostos Orgânicos/farmacocinética , Técnicas de Patch-Clamp/métodos , Peptídeos/farmacologia , Medula Espinal/citologia , Estatísticas não Paramétricas , Fatores de Tempo , Transcrição Gênica , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...