Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3095, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653976

RESUMO

Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.


Assuntos
Vocalização Animal , Animais , Vocalização Animal/fisiologia , Masculino , Genômica , Genoma/genética , Feminino , Aves Canoras/genética , Aves Canoras/fisiologia , Aves/genética , Aves/fisiologia
2.
J Hered ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416051

RESUMO

Previous studies of canid population and evolutionary genetics have relied on high-quality domestic dog reference genomes that have been produced primarily for biomedical and trait mapping studies in dog breeds. However, the absence of highly contiguous genomes from other Canis species like the gray wolf and coyote, that represent additional distinct demographic histories, may bias inferences regarding inter-specific genetic diversity and phylogenetic relationships. Here, we present single haplotype de novo genome assemblies for the gray wolf and coyote, generated by applying the trio-binning approach to long sequence reads generated from the genome of a female first-generation hybrid produced from a gray wolf and coyote mating. The assemblies were highly contiguous, with contig N50 sizes of 44.6 Mb and 42.0 Mb for the wolf and coyote, respectively. Genome scaffolding and alignments between the two Canis assemblies and published dog reference genomes showed near complete collinearity, with one exception: a coyote-specific chromosome fission of chromosome 13 and fusion of the proximal portion of that chromosome with chromosome 8, retaining the Canis-typical haploid chromosome number of 2n=78. We evaluated mapping quality for previous RAD-seq data from 334 canids and found nearly identical mapping quality and patterns among canid species and regional populations regardless of the genome used for alignment (dog, coyote, or gray wolf). These novel wolf and coyote genome reference assemblies will be important resources for proper and accurate inference of Canis demography, taxonomic evaluation, and conservation genetics.

3.
Ecol Evol ; 14(2): e11017, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362164

RESUMO

California's Channel Islands are home to two endemic mammalian carnivores: island foxes (Urocyon littoralis) and island spotted skunks (Spilogale gracilis amphiala). Although it is rare for two insular terrestrial carnivores to coexist, these known competitors persist on both Santa Cruz Island and Santa Rosa Island. We hypothesized that examination of their gut microbial communities would provide insight into the factors that enable this coexistence, as microbial symbionts often reflect host evolutionary history and contemporary ecology. Using rectal swabs collected from island foxes and island spotted skunks sampled across both islands, we generated 16S rRNA amplicon sequencing data to characterize their gut microbiomes. While island foxes and island spotted skunks both harbored the core mammalian microbiome, host species explained the largest proportion of variation in the dataset. We further identified intraspecific variation between island populations, with greater differentiation observed between more specialist island spotted skunk populations compared to more generalist island fox populations. This pattern may reflect differences in resource utilization following fine-scale niche differentiation. It may further reflect evolutionary differences regarding the timing of intraspecific separation. Considered together, this study contributes to the growing catalog of wildlife microbiome studies, with important implications for understanding how eco-evolutionary processes enable the coexistence of terrestrial carnivores-and their microbiomes-in island environments.

4.
Evol Appl ; 17(1): e13634, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283602

RESUMO

Environmental variation can influence the reproductive success of species managed under human care and in the wild, yet the mechanisms underlying this phenomenon remain largely mysterious. Molecular mechanisms such as epigenetic modifiers are important in mediating the timing and progression of reproduction in humans and model organisms, but few studies have linked epigenetic variation to reproductive fitness in wildlife. Here, we investigated epigenetic variation in black-footed ferrets (Mustela nigripes), an endangered North American mammal reliant on ex situ management for survival and persistence in the wild. Despite similar levels of genetic diversity in human-managed and wild-born populations, individuals in ex situ facilities exhibit reproductive problems, such as poor sperm quality. Differences across these settings suggest that an environmentally driven decline in reproductive capacity may be occurring in this species. We examined the role of DNA methylation, one well-studied epigenetic modifier, in this emergent condition. We leveraged blood, testes, and semen samples from male black-footed ferrets bred in ex situ facilities and found tissue-type specificity in DNA methylation across the genome, although 1360 Gene Ontology terms associated with male average litter size shared functions across tissues. We then constructed gene networks of differentially methylated genomic sites associated with three different reproductive phenotypes to explore the putative biological impact of variation in DNA methylation. Sperm gene networks associated with average litter size and sperm count were functionally enriched for candidate genes involved in reproduction, development, and its regulation through transcriptional repression. We propose that DNA methylation plays an important role in regulating these reproductive phenotypes, thereby impacting the fertility of male ex situ individuals. Our results provide information into how DNA methylation may function in the alteration of reproductive pathways and phenotypes in artificial environments. These findings provide early insights to conservation hurdles faced in the protection of this rare species.

5.
Behav Genet ; 54(2): 196-211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38091228

RESUMO

A strong signature of selection in the domestic dog genome is found in a five-megabase region of chromosome six in which four structural variants derived from transposons have previously been associated with human-oriented social behavior, such as attentional bias to social stimuli and social interest in strangers. To explore these genetic associations in more phenotypic detail-as well as their role in training success in a specialized assistance dog program-we genotyped 1001 assistance dogs from Canine Companions for Independence®, including both successful graduates and dogs released from the training program for behaviors incompatible with their working role. We collected phenotypes on each dog using puppy-raiser questionnaires, trainer questionnaires, and both cognitive and behavioral tests. Using Bayesian mixed models, we found strong associations (95% credibility intervals excluding zero) between genotypes and certain behavioral measures, including separation-related problems, aggression when challenged or corrected, and reactivity to other dogs. Furthermore, we found moderate differences in the genotypes of dogs who graduated versus those who did not; insertions in GTF2I showed the strongest association with training success (ß = 0.23, CI95% = - 0.04, 0.49), translating to an odds-ratio of 1.25 for one insertion. Our results provide insight into the role of each of these four transposons in canine sociability and may inform breeding and training practices for working dog organizations. Furthermore, the observed importance of the gene GTF2I supports the emerging consensus that variation in GTF2I genotypes and expression have important consequences for social behavior broadly.


Assuntos
Fatores de Transcrição TFIII , Síndrome de Williams , Humanos , Cães , Animais , Animais de Trabalho , Síndrome de Williams/genética , Síndrome de Williams/psicologia , Comportamento Animal , Teorema de Bayes , Comportamento Social
6.
Mol Ecol ; 33(3): e17231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38054561

RESUMO

Effective population size estimates are critical information needed for evolutionary predictions and conservation decisions. This is particularly true for species with social factors that restrict access to breeding or experience repeated fluctuations in population size across generations. We investigated the genomic estimates of effective population size along with diversity, subdivision, and inbreeding from 162,109 minimally filtered and 81,595 statistically neutral and unlinked SNPs genotyped in 437 grey wolf samples from North America collected between 1986 and 2021. We found genetic structure across North America, represented by three distinct demographic histories of western, central, and eastern regions of the continent. Further, grey wolves in the northern Rocky Mountains have lower genomic diversity than wolves of the western Great Lakes and have declined over time. Effective population size estimates revealed the historical signatures of continental efforts of predator extermination, despite a quarter century of recovery efforts. We are the first to provide molecular estimates of effective population size across distinct grey wolf populations in North America, which ranged between Ne ~ 275 and 3050 since early 1980s. We provide data that inform managers regarding the status and importance of effective population size estimates for grey wolf conservation, which are on average 5.2-9.3% of census estimates for this species. We show that while grey wolves fall above minimum effective population sizes needed to avoid extinction due to inbreeding depression in the short term, they are below sizes predicted to be necessary to avoid long-term risk of extinction.


Assuntos
Lobos , Animais , Lobos/genética , Genética Populacional , Genômica , Densidade Demográfica , América do Norte
7.
J Hered ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37793153

RESUMO

For species of management concern, accurate estimates of inbreeding and associated consequences on reproduction are crucial for predicting their future viability. However, few studies have partitioned this aspect of genetic viability with respect to reproduction in a group-living social mammal. We investigated the contributions of foundation stock lineages, putative fitness consequences of inbreeding, and genetic diversity of the breeding versus non-reproductive segment of the Yellowstone National Park gray wolf population. Our dataset spans 25 years and seven generations since reintroduction, encompassing 152 nuclear families and 329 litters. We found over 87% of the pedigree foundation genomes persisted and report influxes of allelic diversity from two translocated wolves from a divergent source in Montana. As expected for group-living species, mean kinship significantly increased over time but with minimal loss of observed heterozygosity. Strikingly, the reproductive portion of the population carried a significantly lower genome-wide inbreeding coefficients, autozygosity, and more rapid decay for linkage disequilibrium relative to the non-breeding population. Breeding wolves had significantly longer lifespans and lower inbreeding coefficients than non-breeding wolves. Our model revealed that the number of litters was negatively significantly associated with heterozygosity (R=-0.11). Our findings highlight genetic contributions to fitness, and the importance of the reproductively active individuals in a population to counteract loss of genetic variation in a wild, free-ranging social carnivore. It is crucial for managers to mitigate factors that significantly reduce effective population size and genetic connectivity, which supports the dispersion of genetic variation that aids in rapid evolutionary responses to environmental challenges.

8.
Learn Behav ; 51(2): 131-134, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36810744

RESUMO

Here, we address Hansen Wheat et al.'s commentary in this journal in response to Salomons et al. Current Biology, 31(14), 3137-3144.E11, (2021). We conduct additional analyses in response to Hansen Wheat et al.'s two main questions. First, we examine the claim that it was the move to a human home environment which enabled the dog puppies to outperform the wolf puppies in gesture comprehension tasks. We show that the youngest dog puppies who had not yet been individually placed in raisers' homes were still highly skilled, and outperformed similar-aged wolf puppies who had higher levels of human interaction. Second, we address the claim that willingness to approach a stranger can explain the difference between dog and wolf pups' ability to succeed in gesture comprehension tasks. We explain the various controls in the original study that render this explanation insufficient, and demonstrate via model comparison that the covariance of species and temperament also make this parsing impossible. Overall, our additional analyses and considerations support the domestication hypothesis as laid out by Salomons et al. Current Biology, 31(14), 3137-3144.E11, (2021).


Assuntos
Lobos , Cães , Animais , Humanos , Lobos/fisiologia , Triticum , Domesticação , Gestos
9.
Mol Ecol ; 32(4): 892-903, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435981

RESUMO

Ceruminous gland tumours are highly prevalent in the ear canals of Santa Catalina Island foxes (Urocyon littoralis catalinae). Previous work suggests that tumours may result from a combination of ectoparasites, disruption of the host-associated microbiome, and host immunopathology. More specifically, ear mite infection has been associated with broad-scale microbial dysbiosis marked by secondary bacterial infection with the opportunistic pathogen Staphylococcus pseudintermedius. Together, ear mites and S. pseudintermedius probably sustain chronic inflammation and promote conditions suitable for tumour development. In the present study, we expanded upon this framework by constructing otic microbial community networks for mite-infected and uninfected foxes sampled in 2017-2019. Across sampling years, we observed consistent signatures of microbial dysbiosis in mite-infected ear canals, including reduced microbial diversity and shifted abundance towards S. pseudintermedius. Network analysis further revealed that mite infection disrupts overall community structure. In mite-infected networks, interaction strengths between taxa were generally weaker, and numerous subnetworks disappeared altogether. We also found that two strains of S. pseudintermedius connected to the main network, suggesting that multistrain biofilm formation may be occurring. In contrast, S. pseudintermedius is peripheral in the uninfected network, with its only connections including a second strain of S. pseudintermedius and the possible competitor Acinetobacter rhizosphaerae. Finally, the lineup of potential keystone taxa shifted across disease states. Fusobacteria spp., a carcinogenesis-promoting microbe, assumed a keystone role in the mite-infected community. Considered together, these findings provide insights into how mite infection may destabilize the microbiome and ultimately contribute to tumour development in this island endemic species.


Assuntos
Microbiota , Ácaros , Animais , Raposas , Disbiose , Consórcios Microbianos
10.
BMC Ecol Evol ; 22(1): 134, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376792

RESUMO

BACKGROUND: Hybridization can be a conservation concern if genomic introgression leads to the loss of an endangered species' unique genome, or when hybrid offspring are sterile or less fit than their parental species. Yet hybridization can also be an adaptive management tool if rare populations are inbred and have reduced genetic variation, and there is the opportunity to enhance genetic variation through hybridization. The red wolf (Canis rufus) is a critically endangered wolf endemic to the eastern United States, where all extant red wolves are descended from 14 founders which has led to elevated levels of inbreeding over time. Red wolves were considered extirpated from the wild by 1980, but before they disappeared, they interbred with encroaching coyotes creating a genetically admixed population of canids along coastal Texas and Louisiana. In 2018, a genetic study identified individuals on Galveston Island, Texas with significant amounts of red wolf ancestry. We collected 203 fecal samples from Galveston for a more in-depth analysis of this population to identify the amount of red wolf ancestry present and potential mechanisms that support retention of red wolf ancestry on the landscape. RESULTS: We identified 24 individual coyotes from Galveston Island and 8 from mainland Texas with greater than 10% red wolf ancestry. Two of those individuals from mainland Texas had greater than 50% red wolf ancestry estimates. Additionally, this population had 5 private alleles that were absent in the North American reference canid populations used in this study, which included 107 southeastern coyotes, 19 captive red wolves, and 38 gray wolves, possibly representing lost red wolf genetic variation. We also identified several individuals on Galveston Island and the mainland of Texas that retained a unique red wolf mitochondrial haplotype present in the red wolf founding population. On Galveston Island, we identified a minimum of four family groups and found coyotes on the island to be highly related, but not genetically depauperate. We did not find clear associations between red wolf ancestry estimates and landscape features, such as open green space or developed areas. CONCLUSION: Our results confirm the presence of substantial red wolf ancestry persisting on Galveston Island and adjacent mainland Texas. This population has the potential to benefit future red wolf conservation efforts through novel reproductive techniques and possibly through de-introgression strategies, with the goals of recovering extinct red wolf genetic variation and reducing inbreeding within the species.


Assuntos
Canidae , Coiotes , Lobos , Animais , Estados Unidos , Lobos/genética , Coiotes/genética , Texas , Hibridização Genética , Canidae/genética , Variação Genética/genética
11.
Science ; 378(6617): 300-303, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264784

RESUMO

We know much about pathogen evolution and the emergence of new disease strains, but less about host resistance and how it is signaled to other individuals and subsequently maintained. The cline in frequency of black-coated wolves (Canis lupus) across North America is hypothesized to result from a relationship with canine distemper virus (CDV) outbreaks. We tested this hypothesis using cross-sectional data from wolf populations across North America that vary in the prevalence of CDV and the allele that makes coats black, longitudinal data from Yellowstone National Park, and modeling. We found that the frequency of CDV outbreaks generates fluctuating selection that results in heterozygote advantage that in turn affects the frequency of the black allele, optimal mating behavior, and black wolf cline across the continent.


Assuntos
Surtos de Doenças , Vírus da Cinomose Canina , Cinomose , Cor de Cabelo , Interações Hospedeiro-Patógeno , Preferência de Acasalamento Animal , Seleção Sexual , Lobos , Animais , Estudos Transversais , América do Norte , Lobos/genética , Lobos/virologia , Cinomose/epidemiologia , Cinomose/genética , Prevalência , Alelos , Interações Hospedeiro-Patógeno/genética , Cor de Cabelo/genética
12.
Genes (Basel) ; 13(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140828

RESUMO

Coyotes are ubiquitous on the North American landscape as a result of their recent expansion across the continent. They have been documented in the heart of some of the most urbanized cities, such as Chicago, Los Angeles, and New York City. Here, we explored the genomic composition of 16 coyotes in the New York metropolitan area to investigate genomic demography and admixture for urban-dwelling canids in Queens County, New York. We identified moderate-to-high estimates of relatedness among coyotes living in Queens (r = 0.0-0.5) and adjacent neighborhoods, suggestive of a relatively small population. Although we found low background levels of domestic-dog ancestry across most coyotes in our sample (5%), we identified a male suspected to be a first-generation coyote-dog hybrid with 46% dog ancestry, as well as his two putative backcrossed offspring that carried approximately 25% dog ancestry. The male coyote-dog hybrid and one backcrossed offspring each carried two transposable element insertions that are associated with human-directed hypersociability in dogs and gray wolves. An additional, unrelated coyote with little dog ancestry also carried two of these insertions. These genetic patterns suggest that gene flow from domestic dogs may become an increasingly important consideration as coyotes continue to inhabit metropolitan regions.


Assuntos
Coiotes , Lobos , Animais , Coiotes/genética , Elementos de DNA Transponíveis , Cães , Genômica , Humanos , Masculino , Cidade de Nova Iorque , Lobos/genética
13.
Sci Adv ; 8(26): eabn7731, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35767623

RESUMO

The last known red wolves were captured in southwestern Louisiana and eastern Texas in 1980 to establish a captive breeding population. Before their extirpation, gene flow with coyotes resulted in the persistence of endangered red wolf genetic variation in local coyote populations. We assessed genomic ancestry and morphology of coyotes in southwestern Louisiana. We detected that 38 to 62% of the coyote genomes contained red wolf ancestry acquired in the past 30 years and have an admixture profile similar to that of the canids captured before the extirpation of red wolves. We further documented a positive correlation between ancestry and weight. Our findings highlight the importance of hybrids and admixed genomes as a reservoir of endangered species ancestry for innovative conservation efforts. Together, this work presents an unprecedented system that conservation can leverage to enrich the recovery program of an endangered species.

14.
Epigenetics ; 17(11): 1497-1512, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35502722

RESUMO

Unlike genomes, which are static throughout the lifespan of an organism, DNA methylomes are dynamic. To study these dynamics, we developed quantitative models that measure the effect of multiple factors on DNA methylomes including, age, sex, weight, and genetics. We conducted our study in canids, which prove to be an ideal species to assess epigenetic moderators due to their extreme variability in size and well-characterized genetic structure. We collected buccal swabs from 217 canids (207 domestic dogs and 10 grey wolves) and used targeted bisulphite sequencing to measure methylomes. We also measured genotypes at over one thousand single nucleotide polymorphisms (SNPs). As expected, we found that DNA methylomes are strongly associated with age, enabling the construction of epigenetic clocks. However, we also identify novel associations between methylomes and sex, weight, and sterilization status, leading to accurate models that predict these factors. Methylomes are also affected by genetics, and we observe multiple associations between SNP loci and methylated CpGs. Finally, we show that several factors moderate the relationship between epigenetic ages and real ages, such as body weight, which increases epigenetic ageing. In conclusion, we demonstrate that the plasticity of DNA methylomes is impacted by myriad genetics and physiological factors, and that DNA methylation biomarkers are accurate predictors of age, sex and sterilization status.


Assuntos
Metilação de DNA , Epigenoma , Animais , Cães , Epigenômica , Longevidade , Genótipo , Epigênese Genética
15.
Curr Biol ; 32(4): 889-897.e9, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090588

RESUMO

Domestic dogs (Canis lupus familiaris) are the most variable-sized mammalian species on Earth, displaying a 40-fold size difference between breeds.1 Although dogs of variable size are found in the archeological record,2-4 the most dramatic shifts in body size are the result of selection over the last two centuries, as dog breeders selected and propagated phenotypic extremes within closed breeding populations.5 Analyses of over 200 domestic breeds have identified approximately 20 body size genes regulating insulin processing, fatty acid metabolism, TGFß signaling, and skeletal formation.6-10 Of these, insulin-like growth factor 1 (IGF1) predominates, controlling approximately 15% of body size variation between breeds.8 The identification of a functional mutation associated with IGF1 has thus far proven elusive.6,10,11 Here, to identify and elucidate the role of an ancestral IGF1 allele in the propagation of modern canids, we analyzed 1,431 genome sequences from 13 species, including both ancient and modern canids, thus allowing us to define the evolutionary history of both ancestral and derived alleles at this locus. We identified a single variant in an antisense long non-coding RNA (IGF1-AS) that interacts with the IGF1 gene, creating a duplex. While the derived mutation predominates in both modern gray wolves and large domestic breeds, the ancestral allele, which predisposes to small size, was common in small-sized breeds and smaller wild canids. Our analyses demonstrate that this major regulator of canid body size nearly vanished in Pleistocene wolves, before its recent resurgence resulting from human-imposed selection for small-sized breed dogs.


Assuntos
Canidae , Lobos , Alelos , Animais , Tamanho Corporal/genética , Cruzamento , Canidae/genética , Humanos , Lobos/genética
16.
Mol Ecol ; 31(21): 5440-5454, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34585803

RESUMO

Admixture and introgression play a critical role in adaptation and genetic rescue that has only recently gained a deeper appreciation. Here, we explored the geographical and genomic landscape of cryptic ancestry of the endangered red wolf that persists within the genome of a ubiquitous sister taxon, the coyote, all while the red wolf has been extinct in the wild since the early 1980s. We assessed admixture across 120,621 single nucleotiode polymorphism (SNP) loci genotyped in 293 canid genomes. We found support for increased red wolf ancestry along a west-to-east gradient across the southern United States associated with historical admixture in the past 100 years. Southwestern Louisiana and southeastern Texas, the geographical zone where the last red wolves were known prior to extinction in the wild, contained the highest and oldest levels of red wolf ancestry. Further, given the paucity of inferences based on chromosome types, we compared patterns of ancestry on the X chromosome and autosomes. We additionally aimed to explore the relationship between admixture timing and recombination rate variation to investigate gene flow events. We found that X-linked regions of low recombination rates were depleted of introgression, relative to the autosomes, consistent with the large X effect and enrichment with loci involved in maintaining reproductive isolation. Recombination rate was positively correlated with red wolf ancestry across coyote genomes, consistent with theoretical predictions. The geographical and genomic extent of cryptic red wolf ancestry can provide novel genomic resources for recovery plans targeting the conservation of the endangered red wolf.


Assuntos
Canidae , Coiotes , Lobos , Animais , Estados Unidos , Lobos/genética , Coiotes/genética , Hibridização Genética , Genoma/genética , Genômica
17.
Mol Biol Evol ; 38(12): 5588-5609, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519828

RESUMO

The sterility or inviability of hybrid offspring produced from an interspecific mating result from incompatibilities between parental genotypes that are thought to result from divergence of loci involved in epistatic interactions. However, attributes contributing to the rapid evolution of these regions also complicates their assembly, thus discovery of candidate hybrid sterility loci is difficult and has been restricted to a small number of model systems. Here we reported rapid interspecific divergence at the DXZ4 macrosatellite locus in an interspecific cross between two closely related mammalian species: the domestic cat (Felis silvestris catus) and the Jungle cat (Felis chaus). DXZ4 is an interesting candidate due to its structural complexity, copy number variability, and described role in the critical yet complex biological process of X-chromosome inactivation. However, the full structure of DXZ4 was absent or incomplete in nearly every available mammalian genome assembly given its repetitive complexity. We compared highly continuous genomes for three cat species, each containing a complete DXZ4 locus, and discovered that the felid DXZ4 locus differs substantially from the human ortholog, and that it varies in copy number between cat species. Additionally, we reported expression, methylation, and structural conformation profiles of DXZ4 and the X chromosome during stages of spermatogenesis that have been previously associated with hybrid male sterility. Collectively, these findings suggest a new role for DXZ4 in male meiosis and a mechanism for feline interspecific incompatibility through rapid satellite divergence.


Assuntos
Felidae , Infertilidade Masculina , Animais , Gatos/genética , Felidae/genética , Genoma , Infertilidade Masculina/genética , Masculino , Cromossomo X/genética , Inativação do Cromossomo X
18.
Curr Biol ; 31(14): 3137-3144.e11, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34256018

RESUMO

Although we know that dogs evolved from wolves, it remains unclear how domestication affected dog cognition. One hypothesis suggests dog domestication altered social maturation by a process of selecting for an attraction to humans.1-3 Under this account, dogs became more flexible in using inherited skills to cooperatively communicate with a new social partner that was previously feared and expressed these unusual social skills early in development.4-6 Here, we comparedog (n = 44) and wolf (n = 37) puppies, 5-18 weeks old, on a battery of temperament and cognition tasks. We find that dog puppies are more attracted to humans, read human gestures more skillfully, and make more eye contact with humans than wolf puppies. The two species are similarly attracted to familiar objects and perform similarly on non-social measures of memory and inhibitory control. These results are consistent with the idea that domestication enhanced the cooperative-communicative abilities of dogs as selection for attraction to humans altered social maturation.


Assuntos
Comportamento Animal , Comunicação , Cães , Interação Humano-Animal , Lobos , Animais , Evolução Biológica , Cognição , Domesticação , Gestos , Humanos
19.
Ecol Evol ; 11(14): 9472-9488, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306636

RESUMO

The host-associated microbiome is an important player in the ecology and evolution of species. Despite growing interest in the medical, veterinary, and conservation communities, there remain numerous questions about the primary factors underlying microbiota, particularly in wildlife. We bridged this knowledge gap by leveraging microbial, genetic, and observational data collected in a wild, pedigreed population of gray wolves (Canis lupus) inhabiting Yellowstone National Park. We characterized body site-specific microbes across six haired and mucosal body sites (and two fecal samples) using 16S rRNA amplicon sequencing. At the phylum level, we found that the microbiome of gray wolves primarily consists of Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria, consistent with previous studies within Mammalia and Canidae. At the genus level, we documented body site-specific microbiota with functions relevant to microenvironment and local physiological processes. We additionally employed observational and RAD sequencing data to examine genetic, demographic, and environmental correlates of skin and gut microbiota. We surveyed individuals across several levels of pedigree relationships, generations, and social groups, and found that social environment (i.e., pack) and genetic relatedness were two primary factors associated with microbial community composition to differing degrees between body sites. We additionally reported body condition and coat color as secondary factors underlying gut and skin microbiomes, respectively. We concluded that gray wolf microbiota resemble similar host species, differ between body sites, and are shaped by numerous endogenous and exogenous factors. These results provide baseline information for this long-term study population and yield important insights into the evolutionary history, ecology, and conservation of wild wolves and their associated microbes.

20.
J Hered ; 112(5): 458-468, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34132805

RESUMO

In North American gray wolves, black coat color is dominantly inherited via a 3 base pair coding deletion in the canine beta defensin 3 (CBD103) gene. This 3 base pair deletion, called the KB allele, was introduced through hybridization with dogs and subsequently underwent a selective sweep that increased its frequency in wild wolves. Despite apparent positive selection, KBB wolves have lower fitness than wolves with the KyB genotype, even though the 2 genotypes show no observable differences in black coat color. Thus, the KB allele is thought to have pleiotropic effects on as-yet unknown phenotypes. Given the role of skin-expressed CBD103 in innate immunity, we hypothesized that the KB allele influences the keratinocyte gene expression response to TLR3 pathway stimulation and/or infection by canine distemper virus (CDV). To test this hypothesis, we developed a panel of primary epidermal keratinocyte cell cultures from 24 wild North American gray wolves of both Kyy and KyB genotypes. In addition, we generated an immortalized Kyy line and used CRISPR/Cas9 editing to produce a KyB line on the same genetic background. We assessed the transcriptome-wide responses of wolf keratinocytes to the TLR3 agonist polyinosinic:polycytidylic acid (polyI:C), and to live CDV. K locus genotype did not predict the transcriptional response to either challenge, suggesting that variation in the gene expression response does not explain pleiotropic effects of the KB allele on fitness. This study supports the feasibility of using cell culture methods to investigate the phenotypic effects of naturally occurring genetic variation in wild mammals.


Assuntos
Vírus da Cinomose Canina , Lobos , Alelos , Animais , Vírus da Cinomose Canina/genética , Cães , Expressão Gênica , Receptor 3 Toll-Like/genética , Lobos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...